
BULLETIN of the Volume 80
May 2017INSTITUTE ofCOMBINATORICS and itsAPPLICATIONS

Editors-in-Chief: Marco Buratti, Don Kreher, Tran van Trung

Boca Raton, Florida ISSN: 1183-1278



Classroom Note.

Contributions of Graphs to Staff Rostering

Joy Lind

Department of Mathematics, University of Sioux Falls
joy.lind@usiouxfalls.edu

Abstract

Various models have been developed for the “rostering problem,”
that is, the problem of generating a feasible high-quality schedule
(‘roster’) for staff members at a company or business. Such models
are typically solved by integer-programming techniques. In this pa-
per, we show how graphs contribute to an overall solution method
for these types of problems. Our objective is to give students in an
undergraduate discrete mathematics or graph theory course prelimi-
nary exposure to rostering problems and solution methods as well as
to provide exercises that reinforce the graph application component.

1 Introduction

The “rostering problem” is the problem of generating a feasible high-quality
schedule, or “roster,” for staff members at a company or business. The ros-
ter includes, for each staff member, the sequence of shifts and days off to
be worked by that staff member during the time horizon that the roster
specifies. We use the terminology of [3] to describe the components of a
roster. A shift is a period of time during which an employee works and
is identified by a date, a start time, and an end time. For example, an
employee may work a shift on Wednesday, February 15, that starts at 8am
and ends at 5pm. For each staff member, we will seek to identify a roster-
line, a sequence of shifts (days on) and days off during the roster period.
Typically, rules will exist that define some roster-lines as infeasible, mean-
ing that they cannot be assigned; an example would be a roster-line that

BULLETIN OF THE ICA
Volume 80 (2017), Pages 119–127

119 Received: 12 February 2017
Accepted: 14 March 2017



assigns too many days worked in succession without a day off. Otherwise,
a roster-line is feasible. Each feasible roster-line has an associated quality
measure that takes into account any number of quality objectives that staff
members seek; for example, employees typically dislike split weekends in
which one day in the weekend is worked, and the other is not. A roster is
a collection of roster-lines, one for each staff member. A roster is feasible if
it is comprised of feasible roster-lines and if it satisfies pre-specified staffing
requirements, for example, that certain shifts be staffed with a minimum
number of employees or that certain shifts be staffed with employees who
have particular skills. The objective is to find a roster that is both feasible
and high-quality. Meeting this objective can indeed be challenging; “the
roster-line worked by each staff member is typically strictly governed by
laws, union regulations and internal agreements... that can make it hard
to create feasible rosters, let alone high-quality ones” [3].

2 A Mathematical Model for the Rostering
Problem

The rostering problem is commonly modeled as an integer program and
solved using a branch-and-bound technique. In this section, we provide a
high-level overview of one such model that is developed in [3] then refer
the interested reader to that supplemental reference for details. In this
model, there are two sets of constraints: one set of constraints that forces
the assignment of exactly one roster-line to each employee, and one set
of constraints that ensures that the staffing requirements are met for each
shift, while possibly permitting under-coverage or over-coverage on certain
shifts. The model includes three sets of decision variables. The first set
are binary decision variables λre defined for each employee e and roster-line
r in the following way: λre = 1 if roster-line r is assigned to employee e
and λre = 0 otherwise. The two remaining variable sets give the amount
of under-coverage (slack) for each shift and the amount of over-coverage
(surplus) for each shift. Each variable has an associated cost. The cost cor-
responding to the variable λre reflects the quality objectives and in partic-
ular, quantifies the extent to which employee e dislikes roster-line r. There
is also a cost associated with each slack and surplus variable that reflects
how important it is that the staffing requirements for a particular shift be
exactly met. Typically, the slack and surplus variables are each bounded
by values giving the minimum and maximum under-and over-coverage per-
mitted. The objective is to minimize the sum of the costs of all assigned
roster-lines plus the penalties from under-and over-coverage.

120



Even from the above high-level description, the reader may have already
identified one significant challenge in formulating this model, namely con-
structing the complete set of feasible roster-lines for each employee. Fortu-
nately, it turns out that this is not necessary. The solution method for the
integer program described in [3] involves relaxing the integer constraints on
the λre variables to create a linear programming (LP) problem, then applies
branch-and-price, a branch-and-bound method in which at each node of the
tree, a subproblem is solved to generate new columns to be added to the
LP relaxation. We forego details about branch-and-price and column gen-
eration here and instead refer the reader to [1] and [2]. An important point,
however, is that in this rostering model, generating columns is equivalent
to finding feasible roster-lines. Thus, we need not construct a complete set
of feasible roster-lines for each employee at the onset but rather develop (a
subset of) them in the course of the branch-and-price framework. In the
next section, we focus on the method for generating feasible roster-lines
developed in [3] and show how graphs play a prominent role.

3 Generating Roster-Lines for Employees

Here, we summarize the method developed in [3] for generating roster-
lines, with a focus on the graphical component. It will be helpful to define
three additional terms related to shifts and roster-lines. An on-stretch in
an employee’s roster-line is a sequence of shifts that the employee works
in succession. An off-stretch is a sequence of days that the employee has
off, after an on-stretch. A work-stretch is an on-stretch followed by an
off-stretch. One can think of a roster-line for an employee as a sequence
of work-stretches. In [3], roster-lines are generated for each staff member
according to the following three-step process: (1) on-stretches are generated
from shifts, (2) work-stretches are generated from on- and off-stretches, and
(3) roster-lines are generated from work-stretches. We next explain each of
these three steps, then in Section 4, we provide a set of exercises that lead
students through a clarifying example.

In step 1, we use graphs to generate on-stretches from shifts. One graph
is constructed for each employee. In a graph, each shift is represented by
a vertex, and a directed edge exists between two vertices when the corre-
sponding shifts are allowed to be consecutive in an on-stretch, according
to pre-specified rules (e.g. that the shifts be neither too close together nor
too far apart). Since different employees will have different skills, it may
be necessary to exclude certain vertices from an employee’s graph corre-

121



sponding to shifts to which the employee cannot be assigned. Each edge is
given a weight that is calculated within the branch-and-price process and
that takes into account costs of shifts and possibly costs of shift transitions.
Within each graph, the all-to-all shortest path problem is solved by solving
a one-to-all shortest path problem from each vertex in the graph. For each
one-to-all shortest path problem, the starting vertex is selected and then the
graph is reduced to only allow on-stretches up to the maximum on-stretch
length (5 shifts, for example); the maximum length is generally dictated by
a law or other regulation. The one-to-all shortest path problems are solved
(e.g. by Dijkstra’s Algorithm); their solutions then translate into minimum-
weight on-stretches for the particular employee. Feasibility checks can be
applied to each on-stretch. Additionally, pre-specified dominance rules can
be checked to determine if any on-stretches are dominated by (inferior to)
others. On-stretches that are either infeasible or dominated are removed
from consideration; all other of the minimum-weight on-stretches are sent
to step 2.

In step 2, work-stretches are generated from on-stretches for each employee.
Recall that a work-stretch is an on-stretch followed by an off-stretch. On-
stretches are those found in step 1. Each off-stretch is described by a start
time and duration. A work-stretch is formed by taking an on-stretch and ap-
pending an off-stretch. Again, feasibility and dominance tests are applied,
which may result in work-stretches being eliminated from consideration.
All remaining work-stretches are sent to step 3.

In step 3, we use graphs to generate employee roster-lines from work-
stretches. In each graph (one per employee), there is a vertex for each
day, and there is a directed edge for each work-stretch that extends be-
tween the vertices corresponding to the work-stretch’s starting and ending
dates. (Although to clarify, edges are typically drawn so that their terminal
vertex is the day after the work-stretch ended [3].) Additionally, there is
a source vertex and sink vertex that correspond to a pre-determined start
day and end day of the roster. Work-stretch weights are calculated within
the branch-and-price process and are assigned to the edges. We now solve a
one-to-one shortest path problem from the source to the sink in the graph.
This finds a minimum-weight roster-line (sequence of work-stretches) for
the employee. We briefly note that the method in [3] applies techniques
to remove work-stretches (edges) at the onset, to reduce the size and com-
plexity of the graph.

122



4 Student Exercises: An Example

In this section, we lead students through an example of the above process
for generating a roster-line for an employee. Assume that we seek a one-
week staffing roster for 1am, Monday, June 1, through 1am, Monday, June
8, for a group of employees at a particular company. Consider a “day” as
a 24-hour block comprised of the following three work periods: 1am-9am,
9am-5pm, and 5pm-1am. Thus, the roster consists of 21 distinct shifts over
7 days:

• Day 1 = Monday, June 1, 1am-9am; Monday, June 1, 9am-5pm;
Monday, June 1, 5pm through Tuesday, June 2, 1am

• Day 2 = Tuesday, June 2, 1am-9am; Tuesday, June 2, 9am-5pm;
Tuesday, June 2, 5pm through Wednesday, June 3, 1am

· · ·

• Day 7 = Sunday, June 7, 1am-9am; Sunday, June 7, 9am-5pm; Sun-
day, June 7, 5pm through Monday, June 8, 1am.

Each shift has its own staffing requirements (that is, the number and type
of staff members required for each shift). No employee can work more than
5 shifts without a day off. Also, shifts assigned to an employee cannot be
too close together, according to the following rules: an employee can work
at most one 8-hour shift per day, and if the shifts that an employee works
contain a mix of shift types (for example, working 1am-9am on some days
and 9am-5pm on others), the shifts must be “forward rotating” [4], which
means that each successive shift starts at the same or later (but not earlier)
time.

Exercise 1: Draw the graph representation of the on-stretch generation
for an employee at this company.

Solution: We use the notation (JX,Y) to represent the shift that starts on
June X at time Y. For example, (J1,5) corresponds to the shift that starts
on June 1 at 5pm (and that ends at 1am on June 2). Note that edges exist
only between consecutive days (and only between shifts that adhere to the
“forward-rotating” rule); note that an edge that skips a day would be part
of an off-stretch, since each skipped day would constitute a day off, and an
edge between shifts on the same day would violate the rule that at most
one 8-hour shift can be worked per day.

123



Exercise 2: Assume that Employee A does not have the skillset to be able
to do the work required during the 1am-9am time period each day. Draw
the graph representation of the on-stretch generation for Employee A.

Solution:

Exercise 3: Draw the subgraph of the graph in Exercise 1 for solving the
one-to-all shortest path problem starting at (J2,9).

Solution: We reduce the graph from Exercise 1 to only allow on-stretches
that start at vertex (J2,9) and that have at most 5 shifts.

Exercise 4: Assume that feasibility and dominance rules are specified
and that weights are applied to the graph in Exercise 1. Assume that the

124



shortest-path algorithm finds the following minimum-weight on-stretches,
which are verified to be feasible and non-dominated:

• (J1,9) → (J2,9) → (J3,9) → (J4,9) → (J5,9)

• (J3,1) → (J4,1) → (J5,1) → (J6,1) → (J7,1)

• (J2,1) → (J3,1) → (J4,9) → (J5,9) → (J6,9)

• (J1,5) → (J2,5) → (J3,5)

• (J4,9) → (J5,5)

Assume that off-stretches can consist of 1, 2, or 3 days. List the possible
work-stretches for the employee in Exercise 1.

Solution: There are 5x3=15 work-stretches, where a work-stretch consists
of one of five possible on-stretches (as given above), followed by one of three
possible off-stretches (of length 1, 2, or 3 days).

• (J1,9) → (J2,9) → (J3,9) → (J4,9) → (J5,9) → 1 day off (day 6)

• (J1,9)→ (J2,9)→ (J3,9)→ (J4,9)→ (J5,9)→ 2 days off (days 6 and
7)

• (J1,9) → (J2,9) → (J3,9) → (J4,9) → (J5,9) → 3 days off (days 6, 7,
and 8)

• (J3,1) → (J4,1) → (J5,1) → (J6,1) → (J7,1) → 1 day off (day 8)

· · ·

• (J4,9) → (J5,5) → 3 days off (days 6, 7, and 8)

Exercise 5: Assume that among the above work-stretches, all of those
with 1-day off-stretches are deemed infeasible or are dominated. Draw the
graph representation of the roster-line generation problem for the employee
in Exercise 1.

Solution: From the original 15 work-stretches, 10 remain after eliminating
those with 1-day off-stretches. The resulting graph includes one vertex for
each of the original 7 days with additional vertices for extra days needed
to cover all of the work-stretches. There is one directed edge for each

125



of the 10 work-stretches; each edge starts at the vertex corresponding to
the day when the associated work-stretch begins, and ends at the vertex
corresponding to the day after the work-stretch ends. In the below graph,
to assist with readibility, we exclude the source and sink vertices that are
explained in Section 3.

Exercise 6: Assume that after weights are applied to the graph in Exercise
5, the below minimum-weight path is found from the source to sink. What
is the corresponding roster-line for the employee?

Solution: This directed path in the graph corresponds to work-stretch:
(J2,1) → (J3,1) → (J4,9) → (J5,9) → (J6,9) → 2 days off. This translates
to the employee working from 1-9am on June 2, 1-9am on June 3, 9am-
5pm on June 4, 9am-5pm on June 6, then taking June 7-8 off. Note that
since this example used a very small time horizon for the roster period, it
is unsurprising that the employee’s roster-line consisted of a single work-
stretch. Generally, rosters will be comprised of several weeks or months so
that each employee’s roster-line will contain multiple work-stretches.

126



References

[1] J. Desrosiers, M.E. Lübbecke, Branch-price-and-cut algorithms, in: Wi-
ley Encyclopedia of Operations Research and Management Science, Wi-
ley, 2010.

[2] J. Desrosiers, M.E. Lübbecke, A primer in column generation, in: G.
Desaulniers, J. Desrosiers, M. Solomon (Eds.), Column Generation,
Springer, New York, 2005, pp. 1-32 (Chapter 1).

[3] A. Dohn, A. Mason, Branch-and-price for staff rostering: An efficient
implementation using generic programming and nested column gener-
ation, European Journal of Operational Research, 230 (1), 2013, pp.
157-169.

[4] A. Mason, D. Panton, Cyclic rostering using branch and cut, in: Pro-
ceedings of the 37th Annual ORSNZ Conference, University of Auck-
land, 29-30 November 2002, pp. 287-296.

127


