
BULLETIN of the Volume 80
May 2017INSTITUTE ofCOMBINATORICS and itsAPPLICATIONS

Editors-in-Chief: Marco Buratti, Don Kreher, Tran van Trung

Boca Raton, Florida ISSN: 1183-1278



Classroom Note.

Scheduling an Exciting Set of Rugby Matches

Joy Lind

Department of Mathematics, University of Sioux Falls
joy.lind@usiouxfalls.edu

Abstract

In this paper, we use matchings in graphs to establish a set of “ex-
citing” games between pairs of rugby teams. We then present a series
of follow-up exercises appropriate for students in an undergraduate
discrete mathematics or graph theory course.

1 Introduction

New Zealand is home to many rugby teams at various levels, and fans attend
their games expecting to be treated to a high dose of excitement. Assume
that some (even) number of teams will be competing in an upcoming rugby
tournament, with winners at each stage progressing to subsequent rounds
until an overall winner is determined. Here, we focus on the question of how
to establish the set of games comprising the first round of the tournament,
where each such game is played by one pair of teams from the original set.
The pairings could be made in a variety of ways (e.g. random assignment;
pairing the team with the best record, with the team with the worst record,
second best with second worst, etc.) In this paper, we apply the following
method: we associate with each pair of teams an “excitement factor,” a
number that quantifies how exciting a game between the two teams is ex-
pected to be. (This factor might be derived from historical ticket sales, for
example.) We then seek to establish pairings of the teams so as to maximize
the lowest excitement factor among the games that comprise the first stage
of the tournament. (Note that an academic sabbatical the author spent at

BULLETIN OF THE ICA
Volume 80 (2017), Pages 128–136

128 Accepted: 20 April 2017



the University of Auckland in New Zealand motivated the choice of rugby
as the focus of this article, but the content is relevant to just about any
team sport.)

2 Using Graphs to Model the Rugby Prob-
lem

The rugby tournament problem can be modeled as a graph, where each
team is represented by a vertex, and an (undirected) edge exists between
two vertices if the corresponding teams are eligible to play together in the
first round of the tournament. If there are no restrictions on eligibility,
then the graph is complete, in that every pair of vertices is connected by an
edge. However, there could be reasons why certain teams cannot play each
other in the initial round; for example, if the games in the first round are
not played in a central location but instead are geographically dispersed,
then teams that are located too far apart cannot be paired. Thus, it could
be that some edges are missing from the graph. However, we assume that
there is guaranteed to be at least one way of pairing the teams so that each
team is included in some pair; that is, any limitations on how teams can be
paired are not so restrictive that they would prevent a team from being able
to compete in the first round of the tournament. Each edge is assigned a
weight, namely an “excitement factor” for the corresponding pair of teams,
as explained previously.

The rugby tournament problem can now be expressed in terms of graphs as
a matching problem. A matching on a graph is a collection of edges in the
graph such that no two edges share the same vertex. The cardinality of a
matching is the number of edges in the matching. A matching is perfect if
every vertex in the graph is on some edge in the matching. Figure 1 shows
two different perfect matchings (of cardinality 3) on a particular graph.

There is abundant literature on the topic of maximum cardinality match-
ings in graphs. In particular, several polynomial-time algorithms exist for
finding maximum cardinality matchings. For example, Edmonds’ Blossom
algorithm can be used for general graphs [5] and has a complexity ofO(n2m)
[6] (where n is the number of vertices and m is the number of edges in the
graph). The simpler Hungarian algorithm can be used for bipartite graphs
and has a complexity of O(n3) [2]. Note that our previous assumption that
there must be at least one way of pairing the teams so that each team is
included in some pair, guarantees us a perfect matching. Our objective

129



Figure 1: Perfect Matchings on a Graph

then becomes the following: how do we find a perfect matching that maxi-
mizes the lowest excitement factor among the games that comprise the first
stage of the tournament? To answer this, we present a modified version of
a method described in [3].

3 Finding a Perfect Matching

We first address the problem of finding a perfect matching. Here, we apply
a variation of the Blossom algorithm described in [3] and [4] for finding a
maximum cardinality matching on a graph. Since our assumptions guaran-
tee that a perfect matching exists, finding a maximum cardinality matching
is equivalent to finding a perfect matching. The method depends on the no-
tions of paths, alternating paths, and augmenting paths in graphs. A path is
a sequence of edges between two vertices. An alternating path with respect
to a matching M is a path whose edges are alternately in M and not in M .
An augmenting path is an alternating path connecting two unmatched ver-
tices. In Figure 2, there is an augmenting path between unmatched vertices
A and B, namely, A - F - C - B.

Note that if an augmenting path exists for a matching M and is such that
its endpoints are distinct, then we can find a larger cardinality matching by
interchanging the matched and unmatched edges along it; performing these
exchanges produces a new matching whose cardinality is one greater than
the original matching. Applying this method to the matching in Figure 2,
we produce the perfect matching in Figure 1b. In [1], Berge shows that a
matching has maximum cardinality if and only if it has no augmenting path.
It therefore follows that we can find a maximum cardinality matching by
finding any initial matching, then searching for augmenting paths among

130



Figure 2: Matching with an Augmenting Path

unmatched vertices. If no augmenting path is found, then the current
matching has largest cardinality. Since we are assuming a perfect matching
exists, we would need to continue searching for augmenting paths until all
vertices have been matched. While this may seem straightforward, there
is a complication around graphs with odd cycles, where an odd cycle is a
path with an odd number of edges that starts and ends at the same vertex.
Such cycles may constitute alternating paths with respect to a matching
but do not lend themselves to augmentation as described above, since the
interchanging of matched and unmatched edges would result in two matched
edges meeting at a single vertex. In [3] and [4], the authors explain in depth
how to account for odd cycles in graphs. For purposes of simplification, we
will assume that our graphs do not have odd cycles (which would be true
for bipartite graphs, for example).

4 Finding an Optimal Perfect Matching

In the previous section, we focused on finding a maximum cardinality
matching. Such matchings generally are not unique, and so now we turn
our attention to maximum cardinality matchings that are “best” in some
sense. In our rugby tournament problem, we characterize the quality of
a matching by the level of anticipated excitement around the games cor-
responding to the edges in the matching. We develop that idea in this
section.

Assume that in our graph model for the rugby tournament problem, a
non-negative integer-valued “excitement factor” has been determined for
each team pair and that those factors have been assigned as weights to the
graph’s edges. There are various methods for comparing matchings relative

131



to these excitement factors as edge weights. One possibility is to measure
the overall excitement of (round one of) a tournament by summing the
excitement factors along the edges that comprise the tournament an seeking
to maximize that sum. Here, we instead choose to find a tournament that
maximizes the lowest excitement factor among the games that comprise the
tournament; that is, we seek to maximize the minimum edge weight across
the edges in a matching, subject to the matching being perfect. Note
that different ways of measuring excitement will in general lead to different
outcomes. For instance, in a graph consisting of a single four-cycle with
excitement factors of 1, 2, 5, 3 (listed cyclically on the graph’s edges), the
edges with factors of 1 and 5 would be selected if we seek to maximize the
sum of excitement factors, whereas the edges with factors of 2 and 3 would
be selected if we seek to maximize the minimum excitement factor.

As we seek to maximize the minimum edge weight across the edges in a
matching, we note that various methods are described in [3] for solving
problems similar to ours. We present a modified version of one of those
methods here. In a graph G, let M be any maximum cardinality matching,
and let n be the number of matched edges in M . Let cmin be the smallest
edge weight (excitement factor) among edges in M . Let climit = cmin+1.
We now consider the subgraph of G obtained by removing all edges with
weights less than climit. For this graph, we find a maximum cardinality
matching. If the number of edges found is n, then this new matching is an
improvement over M . In this case, the new matching is called M , and the
procedure is repeated. If, however, the number of edges in the new matching
is less than n, then the previous matching was optimal. It can easily be
shown that this method in fact produces an optimal perfect matching:

Proof of optimality: If in a graph G, M is a matching found by the
above procedure, let CM be the lowest edge weight that appears on any
of its edges. Assume there is another perfect matching, P , on G whose
minimum edge weight is CP with CP > CM . Then P does not include any
edges with weights less than CP . Since CP > CM , this means that P is
a perfect matching on G that excludes all edges with weights less than or
equal to CM . However, in that case, our procedure would have found P as
an improved perfect matching over M .

An example is presented in the next section.

132



5 Student Exercises

In this section, we lead students through an example of the above process for
optimally pairing rugby teams in an initial round of a tournament. Assume
there are ten teams, labeled A through J, that require pairing. Due to
eligibility restrictions, some teams are not permitted to play other teams in
the initial round. The below table gives the excitement factor (on a scale
from 1 to 10) for each pair of teams that are eligible to play each other in
the first round. A blank entry indicates that the two teams are not eligible
to play each other.

Table 1: Excitement Factors

A B C D E F G H I J
A 6 9 7 7 7
B 6 10 7 5 5
C 10 8 8 9 9
D 9 8 7 5 3
E 7 7 4 6 6
F 7 8 4 5 6
G 5 5 5 7 6
H 7 9 6 7 7
I 5 3 6 7 4
J 7 9 6 6 4

Exercise 1: Draw the graph that models the rugby tournament problem
for this set of teams.

Solution 1: Note that the graph is bipartite. To facilitate viewability,
edge weights (labels) are not included.

Figure 3: Rugby Graph

133



Exercise 2: Starting with the matching below (consisting of edges AB,
CF, and GH), use the technique of augmenting paths explained in Section
3 to find a perfect matching.

Figure 4: Initial Matching on Rugby Graph

Solution 2: Answers will vary. One possibility is to start with augmenting
path D - A - B - C - F - G - H - I that includes three matched and four
unmatched edges, then interchange the matched and unmatched edges to
arrive at the larger cardinality matching as shown in Figure 5. We can

Figure 5: Larger Cardinality Matching on Rugby Graph

then use augmenting path E - F - G - H - I - J to increase the size of our
matching by interchanging its matched and unmatched edges. Since the
resulting matching covers all vertices, we have found a perfect matching,
as shown in Figure 6. Call this matching M1. We note that the small

Figure 6: M1, A Perfect Matching on Rugby Graph

size of this graph enables us to “visually” detect the augmenting path from

134



which we constructed a perfect matching. When the number of vertices is
large, we would need to rely on algorithms such as those referenced earlier
(Edmonds’ Blossom, Hungarian) to find perfect matchings.

Exercise 3: Starting with the final matching in Exercise 2 (M1 in Figure
6), find a perfect matching that maximizes the minimum excitement factor.
Then, use the resulting matching to identify a most exciting set of rugby
games to comprise the initial round of the tournament.

Solution 3: Applying the excitement factors from Table 1, we find a min-
imum excitement factor of 4 within M1 (edges EF and IJ have factors of
4). We therefore exclude from our original graph all those edges with an
excitement factor less than 5 (namely, edges EF, IJ, and DI), and again
seek a perfect matching. One possibility is shown below; call this M2.

Figure 7: M2, A More Exciting Perfect Matching on Rugby Graph

In matching M2, 6 is the minimum excitement factor, so M2 is an improved
matching over M1. We next exclude from our graph all those edges with an
excitement factor less than 7 (namely, edges AB, BG, BI, DG, DI, EF, EH,
EJ, FG, FI, GJ, and IJ), and again seek a largest cardinality matching. We
find the matching in Figure 8, call it M3, which has no augmenting path
and hence is largest in its respective graph. Since the cardinality of M3 is
less than that of M2, we conclude that M2 is optimal. The initial round of
the rugby tournament should therefore pair the following teams: A and D;
B and C; E and H; G and J; and F and I.

Figure 8: M3, Smaller Matching on Rugby Graph

135



References

[1] C. Berge, “Two Theorems in Graph Theory,” Proc. Natl. Acad. Sci.
U.S., 43 (1957) pp. 842, 844.

[2] M. Kao, T. Lam, W. Sung, and H. Ting, “A Decomposition Theorem for
Maximum Weight Bipartite Matchings,” SIAM Journal on Computing,
Vol. 31 Issue 1 (2001), pp. 18-27.

[3] A. Mason and A. Philpott, “Speaker Matching,” A Third Professional
Project in Engineering Science (1987).

[4] A. Mason and A. Philpott, “Speaker Pairing using Matching Algo-
rithms,” Asia Pacific Journal of Operations Research, 5 (1988), pp.
101-116.

[5] http://mathworld.wolfram.com/BlossomAlgorithm.html

[6] https://brilliant.org/wiki/blossom-algorithm/]complexity

136


