# BULLETIN of the INSTITUTE of COMBINATORICS and its APPLCATIONS 

Editors-in-Chief: Marco Buratti, Don Kreher, Tran van Trung


Volume 80 (2017), Pages 61-70

# An Intersection/Union Theorem for Several Families of Finite Sets 

A. J. W. Hilton<br>Department of Mathematics<br>University of reading<br>Whiteknights<br>Reading<br>RG6 6AX U.K.<br>a.j.w.hilton@reading.ac.uk<br>School of Mathematical Sciences<br>Queen Mary University of London<br>Mile End Rood<br>London, E1 $4 N S$<br>U.K.<br>a.hilton@qmul.ac.uk

May 4, 2017


#### Abstract

Given $u$ families $\mathcal{A}_{1}, \ldots, \mathcal{A}_{u}$ of subsets of the finite set $\{1, \ldots, m\}$, suppose that the intersection of any $s$ subsets drawn from different families is non-empty, and the union of any $t$ subsets drawn from different families is not equal to $\{1, \ldots, m\}$, how big can $\left|\mathcal{A}_{1}\right|+\ldots+\left|\mathcal{A}_{u}\right|$ be? This question is answered in this paper; the answers depend on $s, t, u$ and $m$, and are all best possible. Special cases of this problem were considered in an earlier paper by the present author in 1978.


## 1 Introduction

In [6] the present author gave some intersection and union theorems for several families of subsets of a finite set $X$. Here we give a more general theorem which includes all the earlier theorems as special cases.

Very roughly, we impose two kinds of condition, a union condition which says that the union of $t$ sets drawn from distinct families is never the set $X$, and an intersection condition which says that the intersection of $s$ sets drawn from distinct families is never empty. The question we ask is: if the families are $\mathcal{A}_{1}, \ldots, \mathcal{A}_{u}$, then how large can $\left|\mathcal{A}_{1}\right|+\ldots+\left|\mathcal{A}_{u}\right|$ be? The answer depends on the values of $s, t, u$ and $|X|$.

The answers are all analogues of one of the following statements (here a family $\mathcal{A}$ of subsets of $\{1, \ldots, m\}$ is intersecting if $A_{1}, A_{2} \in \mathcal{A} \Rightarrow A_{1} \bigcap A_{2} \neq$ $\phi$ and is non-union if $\left.A_{1}, A_{2} \in \mathcal{A} \Rightarrow A_{1} \bigcup A_{2} \neq\{1, \ldots, m\}\right)$;

1. A set of $m$ elements has $2^{m}$ subsets.
2. A maximal intersecting family $\mathcal{A}$ of subsets of a set of $m$ elements has $2^{m-1}$ subsets (for each pair $(A, X \backslash A)$, exactly one is in $A$ ).
3. A maximal intersecting, non-union family of subsets of a set of $m$ elements has $2^{m-2}$ subsets.

The result 3 was conjectured by Brace and Daykin [2] in 1972 and different proofs were found by Anderson [1], Daykin and Lovász [3], Greene and Kleitman [4], Schönheim [7], Seymour [8] and Hilton [5]. The proofs in our main theorem were inspired by Schönheim's proof and Seymour's proof.

## 2 The main theorem

We prove
Theorem 1. Let $\mathcal{A}_{1}, \ldots, \mathcal{A}_{u}$ be $u$ families of subsets of the finite set $\{1, \ldots, m\}=X$. Let

$$
A_{i_{1}} \bigcap A_{i_{2}} \bigcap \ldots \bigcap A_{i_{s}} \neq \phi
$$

and

$$
A_{j_{1}} \bigcup A_{j_{2}} \bigcup \ldots \bigcup A_{j_{t}} \neq X
$$

whenever $\left\{i_{1}, i_{2}, \ldots, i_{s}\right\}$ and $\left\{j_{1}, j_{2}, \ldots, j_{t}\right\}$ are two subsets of $\{1, \ldots, u\}$ with $1 \leq i_{1}<i_{2}<\ldots i_{s} \leq u$ and $1 \leq j_{1}<j_{2}<\ldots j_{t} \leq u$ and with $A_{i_{k}} \in \mathcal{A}_{i_{k}}$ and $A_{j_{l}} \in \mathcal{A}_{j_{l}}$ for $1 \leq k \leq s$ and $1 \leq l \leq t$. Let $2 \leq s \leq t$. Then
I. If $s \leq t \leq 2 s-1$ then

$$
\left|\mathcal{A}_{1}\right|+\cdots+\left|\mathcal{A}_{u}\right| \leq \begin{cases}u 2^{m} & \text { for } 1 \leq u \leq s-1 \\ (s-1) 2^{m} & \text { for } s-1 \leq u \leq 4(s-1) \\ u 2^{m-2} & \text { for } u \geq 4(s-1)\end{cases}
$$

II. If $2 s-1 \leq t$ then

$$
\left|\mathcal{A}_{1}\right|+\cdots+\left|\mathcal{A}_{u}\right| \leq \begin{cases}u 2^{m} & \text { for } 1 \leq u \leq s-1 \\ (s-1) 2^{m} & \text { for } s-1 \leq u \leq 2(s-1) \\ u 2^{m-1} & \text { for } 2(s-1) \leq u \leq t-1 \\ (t-1) 2^{m-1} & \text { for } t-1 \leq u \leq 2(t-1) \\ u 2^{m-2} & \text { for } 2(t-1) \leq u\end{cases}
$$

The bound $u 2^{m}$ is obtained by letting $\mathcal{A}_{1}, \ldots, \mathcal{A}_{u}$ each consist of all $2^{m}$ subsets of $\{1, \ldots, m\}$. The bound $(s-1) 2^{m}$ is obtained by letting $\mathcal{A}_{1}, \ldots, \mathcal{A}_{s-1}$ each consist of all $2^{m}$ subsets of $\{1, \ldots, m\}$, and letting $\left|\mathcal{A}_{s}\right|=\left|\mathcal{A}_{s+1}\right|=$ $\cdots=\left|\mathcal{A}_{u}\right|=0$. The bound $u 2^{m-2}$ is obtained by letting $\mathcal{A}_{1}, \ldots, \mathcal{A}_{u}$ each consist of all $2^{m-2}$ subsets of $\{1, \ldots, m\}$ which contain $\{1\}$ and do not contain $\{m\}$. These are the bounds in I. For the bounds in II, the bound $u 2^{m-1}$ for $2(s-1) \leq u \leq t-1$ is achieved by letting $\mathcal{A}_{1}, \ldots, \mathcal{A}_{u}$ each consist of all $2^{m-1}$ subsets of $\{1, \ldots, m\}$ containing $\{1\}$. The bound $(t-1) 2^{m-1}$ for $t-1 \leq u \leq 2(t-1)$ is achieved by letting $\mathcal{A}_{1}, \ldots, \mathcal{A}_{t-1}$ each consist of all $2^{m-1}$ subsets of $\{1, \ldots, m\}$ containing $\{1\}$, and letting $\mathcal{A}_{t}=\ldots=\mathcal{A}_{u}=\phi$.

In the earlier paper, we proved the following special cases of our Theorem 1. Theorem 1 of the earlier paper was the special case when $s=t$. Theorem 2 was the special case when $s=2$ and $u \geq t-1 \geq 1$. Theorem 3 was in effect the special case when $t=1, u \geq s-1 \geq 1$.

## 3 Three useful lemmas

We shall need the following lemmas. The first was proved in [6], but we include the proof here to make this account self-contained.

Lemma 2. If $2 \leq s$ and $0 \leq r \leq 3 \cdot 2^{m-2}$ then

$$
\begin{equation*}
(4 s-5)\left\{2^{m-2}-\left(2^{\frac{m}{2}}-\left(2^{m-2}+r\right)^{\frac{1}{2}}\right)^{2}\right\}-r \geq 0 \tag{1}
\end{equation*}
$$

Proof. The left hand side of (1) equals

$$
\begin{aligned}
& (4 s-5) 2^{m-2}-(4 s-5) 2^{m}-(4 s-5)\left(2^{m-2}+r\right)+ \\
& +2(4 s-5) 2^{m / 2}\left(2^{m-2}+r\right)^{1 / 2}-r \\
& =-(4 s-5) 2^{m}-4(s-1) r+2(4 s-5) 2^{m / 2}\left(2^{m-2}+r\right)^{1 / 2} \\
& \geq 0
\end{aligned}
$$

since

$$
\begin{aligned}
& \left\{2(4 s-5) 2^{m / 2}\left(2^{m-2}+r\right)^{1 / 2}\right\}^{2}-\left\{(4 s-5) 2^{m}+4(s-1) r\right\}^{2} \\
= & 4(4 s-5)^{2} \cdot 2^{m} \cdot\left(2^{m-2}+r\right)-(4 s-5)^{2} 2^{2 m}-16(s-1)^{2} r^{2} \\
- & 2(4 s-5)(s-1) \cdot 4 \cdot 2^{m} \cdot r \\
= & 4 r\left\{(4 s-5)^{2} \cdot 2^{m}-4(s-1)^{2} r-2(4 s-5)(s-1) 2^{m}\right\} \\
= & 4 r\left\{(4 s-5)(2 s-3) 2^{m}-4(s-1)^{2} r\right\} \\
\geq & 4 r\left\{\left(8 s^{2}-22 s+15\right) 2^{m}-\left(3 s^{2}-6 s+3\right) 2^{m}\right\} \\
= & 2^{m+2} r(5 s-6)(s-2) \\
\geq & 0 .
\end{aligned}
$$

Lemma 3. If $2 \leq 2(s-1)<t$ and $0 \leq r \leq 3 \cdot 2^{m-2}$ then

$$
(2 t-3)\left\{2^{m-2}-\left(2^{m / 2}-\left(2^{m-2}+r\right)^{1 / 2}\right)^{2}\right\}-r \geq 0
$$

Proof. Since $2(s-1)<t$ it follows that $2 t-3 \geq 2(2 s-1)-3=4 s-5$, so by Lemma 2 ,

$$
\begin{aligned}
& (2 t-3)\left\{2^{m-2}-\left(2^{m / 2}-\left(2^{m-2}+r\right)^{1 / 2}\right)^{2}\right\}-r \\
\geq & (4 s-5)\left\{2^{m-2}-\left(2^{m / 2}-\left(2^{m-2}+r\right)^{1 / 2}\right)^{2}\right\}-r \\
\geq & 0
\end{aligned}
$$

The third lemma is a theorem of Seymour [8].
Lemma 4. Let $\mathcal{A}$ and $\mathcal{B}$ be two families of subsets of $\{1, \ldots, m\}$, and let $\mathcal{A}$ and $\mathcal{B}$ be incomparable (that is, for no $A \in \mathcal{A}$ and $B \in \mathcal{B}$ is it true that $A \supseteq B$ or $B \supseteq A)$. Then

$$
|\mathcal{A}|^{\frac{1}{2}}+|\mathcal{B}|^{\frac{1}{2}} \leq 2^{\frac{m}{2}}
$$

## 4 Proof of the main theorem

## Proof of Theorem 1.

We first suppose that $s \leq t \leq 2 s-1$.
If $u \leq s-1$ then the intersection condition and the non-union condition are both vacuous, so it is obvious that the maximum value of $\left|\mathcal{A}_{1}\right|+\ldots+\left|\mathcal{A}_{u}\right|$ is achieved when each of $\mathcal{A}_{1}, \ldots, \mathcal{A}_{u}$ consists of all subsets of $2^{m}$. Then

$$
\left|\mathcal{A}_{1}\right|+\cdots+\left|\mathcal{A}_{u}\right|=u 2^{m}
$$

Now suppose that $u \geq s-1$. Suppose that $t \leq u \leq 4(s-1)$. We may suppose that $\left|\mathcal{A}_{1}\right| \geq\left|\mathcal{A}_{2}\right| \geq \ldots \geq\left|\mathcal{A}_{u}\right|$. Since $A_{i_{1}} \bigcap A_{i_{2}} \bigcap \ldots \bigcap A_{i_{s}} \neq \phi$ and $A_{j_{1}} \cup A_{j_{2}} \cup \ldots \bigcup A_{j_{t}} \neq X$ whenever $1 \leq i_{1}<i_{2}<\cdots<i_{s} \leq u$ and $1 \leq j_{1}<j_{2}<\cdots<j_{t} \leq u$ it follows that $\mathcal{A}_{1}$ and $\overline{\mathcal{A}}_{i}$ are incomparable whenever $i \geq 2$ where $\overline{\mathcal{A}}_{i}=\left\{\{1, \ldots, m\} \backslash A_{i}: A_{i} \in \mathcal{A}_{i}\right\}$. That is, no set in $\mathcal{A}_{1}$ contains or is contained by any set in $\overline{\mathcal{A}}_{i}$. Therefore by Seymour's inequality (Lemma 4),

$$
\left|\mathcal{A}_{1}\right|^{1 / 2}+\left|\mathcal{A}_{i}\right|^{1 / 2}=\left|\mathcal{A}_{1}\right|^{1 / 2}+\left|\overline{\mathcal{A}}_{i}\right|^{1 / 2} \leq 2^{m / 2}
$$

If $\left|\mathcal{A}_{1}\right| \leq 2^{m-2}$ then

$$
\left|\mathcal{A}_{1}\right|+\cdots+\left|\mathcal{A}_{u}\right| \leq 4(s-1) 2^{m-2}=(s-1) 2^{m}
$$

as asserted. So suppose that

$$
\left|\mathcal{A}_{1}\right|=2^{m-2}+r
$$

where $0 \leq r \leq 3 \cdot 2^{m-2}$. If $s \leq u \leq 4(s-1)$, then

$$
\begin{aligned}
& (s-1) 2^{m}-\left(\left|\mathcal{A}_{1}\right|+\cdots+\left|\mathcal{A}_{u}\right|\right) \\
\geq & (s-1) 2^{m}-\left\{2^{m-2}+r+(u-1)\left(2^{m / 2}-\left(2^{m-2}+r\right)^{1 / 2}\right)^{2}\right\} \\
= & (4 s-5) 2^{m-2}-(u-1)\left(2^{m / 2}-\left(2^{m-2}+r\right)^{1 / 2}\right)^{2}-r \\
\geq & (4 s-5)\left\{2^{m-2}-\left(2^{m / 2}-\left(2^{m-2}+r\right)^{1 / 2}\right)^{2}\right\}-r \\
\geq & 0, \text { by Lemma } 2 .
\end{aligned}
$$

We know from the above that if $u=s-1$ or $u=t$ then $\left|\mathcal{A}_{1}\right|+\ldots+\left|\mathcal{A}_{u}\right| \leq$ $(s-1) 2^{m}$. Suppose now that $s-1 \leq u \leq t-1(\leq 2(s-1))$, and suppose for a contradiction that $\left|\mathcal{A}_{1}\right|+\ldots+\left|\mathcal{A}_{u}\right|>(s-1) 2^{m}$. Then, by adjoining families $\mathcal{A}_{u+1}, \ldots, \mathcal{A}_{t}$ with $\mathcal{A}_{u+1}=\ldots=\mathcal{A}_{t}=\phi$, we would obtain a set of families $\mathcal{A}_{1}, \ldots, \mathcal{A}_{t}$ satisfying the intersection and non-union rules, and with $\left|\mathcal{A}_{1}\right|+\ldots+\left|\mathcal{A}_{t}\right|>(s-1) 2^{m}$, contradicting our result above for $u=t$.

Finally, suppose that $u \geq 4(s-1)$. Then, as above, $\mathcal{A}_{1}$ and $\overline{\mathcal{A}}_{i}$ are incomparable for $i \geq 2$. Therefore, if $\left|\mathcal{A}_{1}\right|=2^{m-2}+r$, we have

$$
\begin{aligned}
& u 2^{m-2}-\left(\left|\mathcal{A}_{1}\right|+\cdots+\left|\mathcal{A}_{u}\right|\right) \\
\geq & u 2^{m-2}-\left\{2^{m-2}+r+(u-1)\left(2^{m / 2}-\left(2^{m-2}+r\right)^{1 / 2}\right)^{2}\right\} \\
= & 2^{m-2}+(u-1)\left\{2^{m-2}-\left(2^{m / 2}-\left(2^{m-2}+r\right)^{1 / 2}\right)^{2}\right\}-2^{m-2}-r \\
\geq & (4 s-5)\left\{\left(2^{m-2}-\left(2^{m / 2}-\left(2^{m-2}+r\right)^{1 / 2}\right)^{2}\right\}-r\right. \\
\geq & 0, \text { by Lemma } 2 .
\end{aligned}
$$

This completes the proof of I.
Next suppose that $2 s-1 \leq t$. The argument to show that $\left|\mathcal{A}_{1}\right|+\cdots+\left|\mathcal{A}_{u}\right| \leq$ $u 2^{m}$ when $u \leq s-1$ is the same in this case as in the previous case I. Now suppose that $s-1 \leq u \leq 2(s-1)$. We may again suppose that $\left|\mathcal{A}_{1}\right| \geq \cdots \geq\left|\mathcal{A}_{u}\right|$. Since $A_{i_{1}} \bigcap A_{i_{2}} \bigcap \ldots \bigcap A_{i_{s}} \neq \phi$ when $\left\{i_{1}, . ., i_{s}\right\}$ is an $s$-subset of $\{1, \ldots, u\}$, it follows that $A \in \mathcal{A}_{s-i} \Rightarrow \bar{A} \notin \mathcal{A}_{s+i-1}$ whenever $s+i-1 \leq 2(s-1)$. Then at most two of the statements

$$
A \in \mathcal{A}_{s-i}, \bar{A} \in \mathcal{A}_{s-i}, A \in \mathcal{A}_{s+i-1}, \bar{A} \in \mathcal{A}_{s+i-1}
$$

can be true for $1 \leq i \leq u-s+1$, so

$$
\left|\mathcal{A}_{s-i}\right|+\left|\mathcal{A}_{s+i-1}\right| \leq 2^{m} .
$$

Therefore

$$
\left|\mathcal{A}_{2 s-u-1}\right|+\cdots+\left|\mathcal{A}_{u}\right| \leq(u-s+1) 2^{m} .
$$

But $\left|\mathcal{A}_{j}\right| \leq 2^{m}$ for $1 \leq i \leq 2 s-u-2$, so we have

$$
\left|\mathcal{A}_{1}\right|+\cdots+\left|\mathcal{A}_{u}\right| \leq(u-s+1) 2^{m}+(2 s-u-2) 2^{m}=(s-1) 2^{m}
$$

as asserted.

Next suppose that $2(s-1) \leq u \leq t-1$. If $A \in \mathcal{A}_{1}$ then $\bar{A} \notin \mathcal{A}_{j}$ for $j>1$, so $\left|\mathcal{A}_{1}\right|+\left|\mathcal{A}_{j}\right| \leq 2^{m}$. Suppose that $\left|\mathcal{A}_{1}\right|=2^{m-1}+r$, where $0 \leq r \leq 2^{m-1}$. Then

$$
\begin{aligned}
\left|\mathcal{A}_{1}\right|+\cdots+\left|\mathcal{A}_{u}\right| & \leq 2^{m-1}+r+(u-1)\left(2^{m-1}-r\right) \\
& \leq u 2^{m-1}-(u-2) r \\
& \leq u 2^{m-1}
\end{aligned}
$$

Next suppose that $(t-1) \leq u \leq 2(t-1)$. If $u=t-1$ then, as just above,

$$
\left|\mathcal{A}_{1}\right|+\cdots+\left|\mathcal{A}_{u}\right| \leq u 2^{m-1}=(t-1) 2^{m-1}
$$

It is convenient to consider the case when $t-1 \leq u \leq 2(t-1)$ in further detail after the next case (but note that there is no circularity of argument since we do not use the result for $t-1 \leq u \leq 2(t-1)$ in proving the next case).

Next suppose that $u \geq 2(t-1)$. If $\left|\mathcal{A}_{1}\right| \leq 2^{m-2}$ then $\left|\mathcal{A}_{1}\right|+\cdots+\left|\mathcal{A}_{u}\right| \leq$ $u 2^{m-2}$ as asserted. So suppose that $\left|\mathcal{A}_{1}\right|=2^{m-2}+r$ for some $r, 0 \leq r \leq$ $3 \cdot 2^{m-2}$. Then, as above, $\mathcal{A}_{1}$ and $\overline{\mathcal{A}}_{i}$ are incomparable and we have

$$
\left|\mathcal{A}_{1}\right|^{1 / 2}+\left|\mathcal{A}_{i}\right|^{1 / 2}=\left|\mathcal{A}_{1}\right|^{1 / 2}+\left|\overline{\mathcal{A}}_{i}\right|^{1 / 2} \leq 2^{m / 2},
$$

so

$$
\left|A_{i}\right| \leq\left(2^{m / 2}-\left(2^{m-2}+r\right)^{1 / 2}\right)^{2} .
$$

Therefore

$$
\begin{aligned}
& u 2^{m-2}-\left\{\left|\mathcal{A}_{1}\right|+\cdots+\left|\mathcal{A}_{u}\right|\right\} \\
\geq & u 2^{m-2}-\left\{2^{m-2}+r+(u-1)\left(2^{m / 2}-\left(2^{m-2}+r\right)^{1 / 2}\right)^{2}\right\} \\
= & 2^{m-2}+(u-1)\left\{2^{m-2}-\left(2^{m / 2}-\left(2^{m-2}+r\right)^{\frac{1}{2}}\right)^{2}\right\}-2^{m-2}-r \\
\geq & \left.(2 t-3)\left\{2^{m-2}-\left(2^{m / 2}-\left(2^{m-2}+r\right)^{\frac{1}{2}}\right)^{2}\right)\right\}-r \\
\geq & 0, \text { by Lemma } 3 .
\end{aligned}
$$

Finally suppose that $(t-1) \leq u \leq 2(t-1)$. Note that, from just above, if $u=2(t-1)$ then $\left|\mathcal{A}_{1}\right|+\cdots+\left|\mathcal{A}_{2(t-1)}\right| \leq 2(t-1) 2^{m-2}=(t-1) 2^{m-1}$. If for some $u, t-1 \leq u \leq 2(t-1)$ we had $\mathcal{A}_{1}, \ldots, \mathcal{A}_{u}$ satisfing the intersection rule but with $\left|\mathcal{A}_{1}\right|+\cdots+\left|\mathcal{A}_{u}\right|>(t-1) 2^{m-1}=(t-1) 2^{m-1}$, then, by adjoining $\mathcal{A}_{u+1}, \ldots, \mathcal{A}_{2(t-1)}$ with $\left|\mathcal{A}_{u+1}\right|=\cdots=\left|\mathcal{A}_{2(t-1)}\right|=0$, we would have $2(t-1)$ families satisfying the intersection rule but with $\left|\mathcal{A}_{1}\right|+\cdots+\left|\mathcal{A}_{2(t-1)}\right|>$ $(t-1) 2^{m-1}$, a contradiction. Therefore

$$
\left|\mathcal{A}_{1}\right|+\cdots+\left|\mathcal{A}_{u}\right| \leq(t-1) 2^{m-1}
$$

in this case.
This completes the proof of II.

What happens in the case not considered in Theorem 1 where $t<s$ ? This is easy to find by taking complements. We obtain:

Theorem 5. With $m, u, s$ and $t$ defined as in Theorem 1, suppose that $2 \leq t \leq s$. Then
I. If $t \leq s \leq 2 t-1$, then

$$
\left|\mathcal{A}_{1}\right|+\cdots+\left|\mathcal{A}_{u}\right| \leq \begin{cases}u 2^{m} & \text { for } 1 \leq u \leq t-1 \\ (t-1) 2^{m} & \text { for } t-1 \leq u \leq 4(t-1) \\ u 2^{m-2} & \text { for } u \geq 4(t-1)\end{cases}
$$

II. If $2 t-1 \leq s$ then

$$
\left|\mathcal{A}_{1}\right|+\cdots+\left|\mathcal{A}_{u}\right| \leq \begin{cases}u 2^{m} & \text { for } 1 \leq u \leq t-1 \\ (t-1) 2^{m} & \text { for } t-1 \leq u \leq 2(t-1) \\ u 2^{m-1} & \text { for } 2(t-1) \leq u \leq s-1 \\ (s-1) 2^{m-1} & \text { for } s-1 \leq u \leq 2(s-1) \\ u 2^{m-2} & \text { for } 2(s-1) \leq u\end{cases}
$$

Proof. Suppose that $2 \leq t \leq s$. Since

$$
A_{i_{1}} \bigcap A_{i_{2}} \bigcap \ldots \bigcap A_{i_{s}} \neq \phi
$$

it follows that

$$
\bar{A}_{i_{1}} \bigcup \bar{A}_{i_{2}} \bigcup \ldots \bigcup \bar{A}_{i_{s}} \neq X
$$

and since

$$
A_{j_{1}} \bigcup A_{j_{2}} \bigcup \ldots \bigcup A_{j_{t}} \neq X
$$

it follows that $\overline{\mathcal{A}}_{j_{1}} \cap \overline{\mathcal{A}}_{j_{2}} \bigcap \ldots \bigcap \overline{\mathcal{A}}_{j_{t}} \neq \phi$. Since

$$
\left|\mathcal{A}_{i}\right|=\left|\left\{A: A \in \mathcal{A}_{i}\right\}\right|=\left|\left\{\overline{\mathcal{A}}: A \in \mathcal{A}_{i}\right\}\right|,
$$

we can interchange $t$ and $s$ in the bounds found in Theorem 1 to find the correct bounds in this theorem.

## 5 Further remarks

We could extend this study to a more general extremal problem. Suppose that $\mathcal{A}_{1}, \ldots, \mathcal{A}_{u}$ are families of distinct subsets of $\{1,2, \ldots, m\}$. Let $g(u, h, k, s, t, m)$ be the maximum value of

$$
\left|\mathcal{A}_{1}\right|+\left|\mathcal{A}_{2}\right|+\ldots+\left|\mathcal{A}_{u}\right|
$$

in the case where

$$
\left|A_{i_{1}} \cap A_{i_{2}} \cap \ldots \cap A_{i_{s}}\right| \geq h
$$

and

$$
\left|A_{j_{1}} \cap A_{j_{2}} \cap \ldots \cap A_{j_{t}}\right| \leq m-k
$$

whenever $i_{1}, i_{2}, \ldots, i_{s}$ are distinct subscripts from $\{1,2, \ldots, u\}$ and $A_{i_{l}} \in$ $\mathcal{A}_{i_{l}}(1 \leq l \leq s)$, and similarly $j_{1}, j_{2}, \ldots, j_{t}$ are distinct subscripts from $\{1,2, \ldots, u\}$ and $A_{j_{l}} \in \mathcal{A}_{j_{l}}(1 \leq l \leq t)$.

Theorem 1 of [6] is the special case of our Theorem 1 when $s=t$. We would like to suggest the following generalization of Theorem 1 of [6]. Theorem 1 of [6] is the special case of the conjecture when $h=1$.
Conjecture 6. Let $m, h, u$ and $s$ be positive integers with $u \geq s \geq 1$. Let $\mathcal{A}_{1}, \ldots, \mathcal{A}_{u}$ be $u$ families of distinct subsets of $\{1, \ldots, m\}$ such that

$$
\left|A_{i_{1}} \bigcap \ldots \bigcap A_{i_{s}}\right| \geq h
$$

and

$$
\left|A_{i_{1}} \bigcup \ldots \bigcup A_{i_{s}}\right| \leq m-h
$$

whenever $i_{1}, \ldots, i_{s}$ are distinct subscripts from $\{1, \ldots, u\}$ and $A_{i_{j}} \in \mathcal{A}_{i_{j}}(1 \leq$ $i \leq s)$. Then

$$
\left|\mathcal{A}_{1}\right|+\cdots+\left|\mathcal{A}_{u}\right| \leq\left\{\begin{array}{lll}
u 2^{m} & \text { for } & u \leq s-1 \\
(s-1) 2^{m} & \text { for } & s-1 \leq u \leq 2^{2 h}(s-1) \\
u 2^{m-2 h} & \text { for } & u \geq 2^{2 h}(s-1)
\end{array}\right.
$$

In other words, we conjecture that

$$
g(u, h, h, s, s, m)=\left\{\begin{array}{lll}
u 2^{m} & \text { for } & u \leq s-1 \\
(s-1) 2^{m} & \text { for } & s-1 \leq u \leq 2^{2 h}(s-1) \\
u 2^{m-2 h} & \text { for } & u \geq 2^{2 h}(s-1)
\end{array}\right.
$$

Acknowledgement. I would like to thank William Raynaud and the referee for numerous small improvements to the exposition and for the removal of several minor errors.

## References

[1] I. Anderson, Intersection theorems and a lemma of Kleitman, Discrete Mathematics, 16 (1976),181-185.
[2] A. Brace and D. E. Daykin, Sperner type theorem for finite sets, Proc. Oxford Conf. on Combinatorics, 1972, IMA. eds: D.J.A Welsh and D. R. Woodall, 18-37.
[3] D. E. Daykin and L. Lovász, The number of values of a Boolean function, J. London Math. Soc. (2), 12 (1976), 225-230.
[4] C. Greene and D. J. Kleitman, Proof techniques in the theory of finite sets. In: Studies in Combinatorics (ed. G.C.Rota), M.A.A. Stud. Math. 17 (1978), 22-79.
[5] A. J. W. Hilton, A theorem on finite sets, Quart. J. Math. (Oxford) (2), 27 (1976), 33-36.
[6] A. J. W. Hilton, Some intersection and union theorems for several families of finite sets, Mathematika, 25(1978), 125-128.
[7] J. Schönheim, On a problem of Daykin concerning intersecting families of sets. Proc. British Comb. Conf. 1973, L.M.S. Lecture Note Series 13, T. P. McDonough and V. C. Mavron (eds), 139-140.
[8] P. D. Seymour, On incomparable families of sets, Mathematika, 20(1973), 208-209.

