BULLETIN of the INSTITUTE of COMBINATORICS and its APPLCATIONS

Editors-in-Chief: Marco Buratti, Don Kreher, Tran van Trung

A New Method for Constructing Circuit Codes

Kevin M. Byrnes *

Abstract

Circuit codes are cycles in the graph of the n dimensional hypercube. They are theoretically and practically important, as circuit codes can be used as error correcting codes. A circuit code is characterized by three parameters: its dimension, its spread (which determines how many errors it can detect), and its length (which determines its accuracy). We present a new method for constructing a circuit code of spread $k+1$ from a circuit code of spread k. This method leads to record code lengths for 18 circuit codes of spread $k=7$ and 8 in dimension $22 \leq n \leq 30$. We also derive a new lower bound on the length of circuit codes of spread 4 , which improves upon bound suggested by Singleton for dimension $n \geq 86$.

Keywords:Circuit Code, Snake in the Box, Coil in the Box, k-Coil, Error Correcting Code

1 Introduction

Let $I(n)$ denote the graph of the n dimensional hypercube, that is the graph on 2^{n} vertices where each vertex corresponds to a binary vector of length n, and two vertices x and x^{\prime} are adjacent if their binary vectors differ in exactly one position. For any subgraph G of $I(n)$ and any two vertices $x, x^{\prime} \in G$ we define the distance $d_{G}\left(x, x^{\prime}\right)$ as the minimum number of edges in G needed to travel from x to x^{\prime}. If there is no path in G from x to x^{\prime} then $d_{G}\left(x, x^{\prime}\right)=\infty$. Observe that $d_{I(n)}\left(x, x^{\prime}\right)$ equals the number of positions where the binary vectors corresponding to x and x^{\prime} differ.

[^0]A circuit C is a graph consisting of a sequence of distinct vertices $\left(x_{1}, \ldots, x_{N}\right)$ where each pair of cyclically consecutive vertices is adjacent, and the edges between these consecutive vertices. For brevity we will often say that $C=$ $\left(x_{1}, \ldots, x_{N}\right)$ is a circuit, in which case the edges are implied. For any pair of vertices x_{i}, x_{j} in a circuit $C=\left(x_{1}, \ldots, x_{N}\right)$ with $i<j$ there are exactly two paths between x_{i} and x_{j} in C, traversing the edges: $x_{i} x_{i+1}, \ldots, x_{j-1} x_{j}$ and $x_{j} x_{j+1}, \ldots, x_{N-1} x_{N}, x_{N} x_{1}, \ldots, x_{i-1} x_{i}$ respectively. An n-dimensional code is a subgraph of $I(n)$.

Definition 1.1. A subgraph C of $I(n)$ is a circuit code of spread k (an (n, k) circuit code) if:

1. C is a circuit.
2. If x and x^{\prime} are vertices of C with $d_{I(n)}\left(x, x^{\prime}\right)<k$ then $d_{C}\left(x, x^{\prime}\right)=d_{I(n)}\left(x, x^{\prime}\right)$.

An equivalent characterization of circuit codes was proven by Klee.
Lemma 1.2 (Klee [14] Lemma 2). An n-dimensional circuit code C of length $N \geq 2 k$ has spread k if and only if for all vertices $x, x^{\prime} \in C$, $d_{C}\left(x, x^{\prime}\right) \geq k \Rightarrow d_{I(n)}\left(x, x^{\prime}\right) \geq k$.

Finding long circuit codes is practically and theoretically important, since circuit codes can be used as error-correcting codes [12]. Circuit codes of spread 1 are known as Gray codes [8], and circuit codes of spread 2 are known as coils or snakes in the box (however, current terminology uses "snake" to refer to an open path) [12]. Both of these types of circuit codes have been extensively studied. Let $K(n, k)$ denote the maximum length of an (n, k) circuit code, it is well-known that $K(n, 1)=2^{n}$ and $K(n, 2) \geq \frac{77}{256} 2^{n}[1]$. In contrast, circuit codes of spread $k \geq 3$ are lesswell understood and exact values for $K(n, k)$ are generally only known for $n \leq 17$ and $k \leq 7$ and some special (n, k) pairs.

In this note we present a simple new construction for generating a circuit code of spread $k+1$ from a circuit code of spread k. This allows the better studied codes of smaller spreads to be leveraged to create codes of larger spreads, and results in 18 new records for codes of spread 7 and 8, and in dimension $22 \leq n \leq 30$. Specifically, we prove the following theorem.

Theorem 1.3. Let C be an (n, k) circuit code with length $N \geq 2(k+1)$. Then there exists an $(n+r, k+1)$ circuit code C^{\prime} with length $N^{\prime}=N+2 q$, where $q=\left\lceil\frac{N}{2(k+1)}\right\rceil$ and $r=\left\lceil\log _{2} q\right\rceil+1$.

A useful application of Theorem 1.3 is a new lower bound on $K(n, 4)$ which improves upon the lower bound suggested by Singleton [20] when $n \geq 86$.
Theorem 1.4. For $n \geq 6, K(\lfloor 1.53 n\rfloor, 4) \geq 40 \cdot 3^{(n-8) / 3}$, and hence $K(n, 4) \geq 40 \cdot 3^{(\lfloor .6535 n\rfloor-8) / 3}$.

2 Previous Constructions and Bounds

We begin by surveying the theoretical lower bounds for $K(n, k)$ and some of the most important constructions used in their derivation. Exact values for $K(n, k)$ are known for only a few special cases, given in Table 1.

Table 1: Exact values for $K(n, k)$.

$K(n, k)=2 n$	for $n<\left\lfloor\frac{3 k}{2}\right\rfloor+2$	(See [20])
$K\left(\left\lfloor\frac{3 k}{2}\right\rfloor+2, k\right)=4 k+6$	for k even	(See [7])
$K\left(\left\lfloor\frac{3 k}{2}\right\rfloor+2, k\right)=4 k+4$	for k odd	(See [7])
$K\left(\left\lfloor\frac{3 k}{2}\right\rfloor+3, k\right)=4 k+8$	for k odd ≥ 9	(See [7])

The following constructions apply for a wide variety of (n, k) combinations. Here we state the "result" of each construction and refer the reader to the original paper for the precise construction details.
Construction 2.1 (Singleton [20]). Let C be an (n, k) circuit code with length N. Then there exists an $(n+1, k)$ circuit code C^{\prime} with length $N^{\prime}=$ $N+2\left\lfloor\frac{N}{2 k}\right\rfloor$.
Construction 2.2 (Singleton [20]). Let C be an (n, k) circuit code with length N, and $k \geq 3$. Then there exists an $(n+2, k)$ circuit code C^{\prime} with length $N^{\prime}=N+4\left\lfloor\frac{N}{2(k-1)}\right\rfloor$.
Construction 2.3 (Singleton [20]). Let C be an (n, k) circuit code with length N for $k \geq 3$ and k odd. Then there exists an $\left(n+\frac{k+1}{2}, k\right)$ circuit code C^{\prime} with length $N^{\prime}=N+(k+1)\left\lfloor\frac{N}{k+1}\right\rfloor$.
Construction 2.4 (Singleton [20]). Let C be an (n, k) circuit code with length N for $k \geq 2$ and k even. Then there exists an $\left(n+\frac{k+2}{2}, k\right)$ circuit code C^{\prime} with length $N^{\prime}=N+(k+2)\left\lfloor\frac{N}{k+1}\right\rfloor$.
Construction 2.5 (Deimer [5]). Let C be an $(n+1, k+1)$ circuit code with length N. Then there exists an (n, k) circuit code C^{\prime} with length $N^{\prime} \geq$ $N-\left\lfloor\frac{N}{n+1}\right\rfloor$.

Construction 2.6 (Klee [14]). Let k be even and let $2 \leq n_{1} \leq n_{2}$. Suppose C_{1} is an $\left(n_{1}, k-1\right)$ circuit code of length $N_{1} \geq 2 k$ where N_{1} is divisible by k, and suppose C_{2} is an $\left(n_{2}, k\right)$ circuit code with length $N_{2} \geq 2 k$. If $k=2$ there exists an $\left(n_{1}+n_{2}, k\right)$ circuit code C^{\prime} of length $N^{\prime}=\frac{N_{1} N_{2}}{k}$. If $k \geq 4$ there exists an $\left(n_{1}+n_{2}+1, k\right)$ circuit code C^{\prime} of length $N^{\prime}=\frac{N_{1}\left(N_{2}+2\right)}{k}$.

These constructions result in the following lower bounds for $K(n, k), k \geq 3$.

Table 2: Lower bounds for $K(n, k)$.

$$
\begin{array}{lll}
K(n, 2) \geq \frac{77}{256} 2^{n} & & \text { (See [1]) } \\
K(n, 3) \geq 32 \cdot 3^{(n-8) / 3} & \text { for } n \geq 6 & \text { (See [20]) } \\
K(n, k) \geq(k+1) 2^{\lfloor 2 n /(k+1)\rfloor-1} & \text { for } k \text { odd and }\left\lfloor\frac{2 n}{k+1}\right\rfloor \geq 2 & \text { (See [20]) } \\
K(n, 4) \succ \delta^{n} & \text { for } 0<\delta<3^{1 / 3} & \text { (See [14]) } \tag{14}\\
K(n, k) \succ \delta^{n} & \text { for } k \text { even and } 0<\delta<4^{1 / k} & \text { (See [14]) } \\
K(n, k) \gtrsim 4^{n /(k+1)} & \text { for odd } k>3 & \text { (See [14]) }
\end{array}
$$

The last three inequalities in Table 2 are asymptotic bounds, where $f(n) \lesssim g(n)$ means $\liminf _{n \rightarrow \infty} g(n) / f(n)>0$, and $f(n) \prec g(n)$ means $\lim _{n \rightarrow \infty} g(n) / f(n)=\infty$.

In addition to the previous constructions, the "necklace" construction of Paterson and Tuliani has been particularly important, leading to many new records for $K(n, k)$ [18]. However, identifying arrangements of necklaces satisfying the conditions of that construction required a backtrack search, limiting the dimensions examined to $n \leq 17$. The conditions placed upon the arrangement of necklaces also become more restrictive as k increases, and for the range of dimensions n examined, no suitable arrangements for codes of spread $k \geq 7$ were found [18].

For $n \leq 17$ and $k \leq 7$ many of the current records for $K(n, k)$ (reported in Table 3) have been set by computational methods, e.g. exhaustive search $[15,11]$, pruning based approaches [21, 16], genetic algorithms [19, 3, 6, 13], or other computational approaches [4, 22, 2].

3 Generating an $(n+r, k+1)$ Circuit Code from an (n, k) Circuit Code

3.1 Transition Sequences

Each vertex of $I(n)$ corresponds to a binary vector of length n, so for every circuit $C=\left(x_{1}, \ldots, x_{N}\right)$ of $I(n)$ we can define a transition sequence $T=\left(\tau_{1}, \ldots, \tau_{N}\right)$ where τ_{i} denotes the position in which x_{i} and x_{i+1} (or x_{N} and x_{1}) differ. Using the convention that $x_{1}=\overrightarrow{0}$ for any circuit, we see that the transition sequence corresponds uniquely to the edges in C. Since $I(n)$ is bipartite this implies $|T|$ is even [10].

Define a segment of a sequence $T=\left(\tau_{1}, \ldots, \tau_{N}\right)$ as a subsequence of cyclically consecutive elements. For any $x_{i}, x_{j} \in C=\left(x_{1}, \ldots, x_{N}\right)$ with $i<j$ there are exactly two segments in T between x_{i} and x_{j}, corresponding to the two paths in C traversing the edges: $x_{i} x_{i+1}, \ldots, x_{j-1} x_{j}$ and $x_{j} x_{j+1}, \ldots, x_{N-1} x_{N}, x_{N} x_{1}, \ldots, x_{i-1} x_{i}$. These segments are $\left(\tau_{i}, \tau_{i+1}, \ldots, \tau_{j-1}\right)$ and $\left(\tau_{j}, \tau_{j+1}, \ldots, \tau_{N}, \tau_{1}, \ldots, \tau_{i-1}\right)$. If $i=j$ then the two segments are \varnothing and T. These segments are called complements because they partition T. If \hat{T} is a segment in T, its complement is denoted \hat{T}^{\complement}, and $\left(\hat{T}^{\complement}\right)^{\complement}=\hat{T}$.

The set of transition elements $\left\{t_{1}, \ldots, t_{m}\right\}(m \leq n)$ of T are the unique elements of T. When T is the transition sequence of a circuit each $t_{i} \in$ $\left\{t_{1}, \ldots, t_{m}\right\}$ must appear in T an even number of times. A useful result to which we shall refer is the following.

Lemma 3.1 (Singleton [20]). Let C be a circuit code of spread k and length $N \geq 2(k+1)$ with corresponding transition sequence T. Then any $k+1$ cyclically consecutive elements of T are all distinct.

3.2 A New Circuit Code Construction

The idea behind proving Theorem 1.3 is to strategically insert members of a new set of transition elements $\left\{s_{1}, \ldots, s_{r}\right\}$ into T, the transition sequence of an (n, k) circuit code, so that the resulting sequence T^{\prime} is the transition sequence of an $(n+r, k+1)$ circuit code. An $(n+r, k+1)$ circuit code can then be constructed by setting the first vertex to $\overrightarrow{0}$ and defining subsequent vertices from T^{\prime}. As Example 1 illustrates, the straightforward approach of
inserting all r new transition elements after each complete segment of T of length $k+1$ can fail to increase the spread. Thus a more careful approach (the following Construction 3.2, which is illustrated concretely in Example $2)$ is needed.

Example 1. The following transition sequence from [14] results in a $(6,2)$ circuit code of length 24:

$$
T=(1,2,6,4,5,6,1,3,5,4,6,5,1,2,6,4,5,6,1,3,5,4,6,5) .
$$

For any $r>0$ there are three possible new transition sequences formed by inserting the sequence $X=7, \ldots, 6+r$ after the end of every segment of T of length 3, these are (temporarily ignoring overbraces):

$$
\begin{aligned}
& T^{\prime}=(\overbrace{X, 1,2,6, X, 4,5,6, X, 1,3,5, X, 4}, 6,5, X, 1,2,6, X, 4,5,6, X, 1,3,5, X, 4,6,5) \\
& T^{\prime \prime}=(\overbrace{1, X, 2,6,4, X, 5,6,1, X, 3,5,4, X}, 6,5,1, X, 2,6,4, X, 5,6,1, X, 3,5,4, X, 6,5) \\
& T^{\prime \prime \prime}=(1,2, \overbrace{X, 6,4,5, X, 6}, 1,3, X, 5,4,6, X, 5,1,2, X, 6,4,5, X, 6,1,3, X, 5,4,6, X, 5)
\end{aligned}
$$

Each of these sequences has length $N^{\prime}=24+8 r$. If $T^{\prime}, T^{\prime \prime}$, or $T^{\prime \prime \prime}$ is the transition sequence of a spread 3 circuit code it follows from Lemma 1.2 that in every segment of length ≥ 3 corresponding to a shortest path in the circuit between two vertices, i.e. every segment with length between 3 and $\frac{N^{\prime}}{2}(=12+4 r)$, at least 3 transition elements must appear an odd number of times. This condition is violated in $T^{\prime}, T^{\prime \prime}$, and $T^{\prime \prime \prime}$ by the overbraced segments. Thus T cannot be extended to $a(6+r, 3)$ transition sequence by inserting X after each segment of T of length 3 .

Unlike the simple method of Example 1, we will prove the following construction is guaranteed to result in the transition sequence of a circuit code of increased spread.

Construction 3.2.

Split T in half into $T^{1}=\left(\tau_{1}, \ldots, \tau_{N / 2}\right)$ and $T^{2}=\left(\tau_{N / 2+1}, \ldots, \tau_{N}\right)$
$q \leftarrow\left\lceil\frac{N}{2(k+1)}\right\rceil$
Split T^{1} into q segments:

$$
\begin{aligned}
& T_{j}^{1}=\left(\tau_{(k+1) \cdot(j-1)+1}, \ldots, \tau_{(k+1) \cdot j}\right) \text { for } j=1, \ldots, q-1 \\
& T_{q}^{1}=\left(\tau_{(k+1) \cdot(q-1)+1}, \ldots, \tau_{N / 2}\right)
\end{aligned}
$$

Split T^{2} into q segments:

$$
\begin{aligned}
& T_{j}^{2}=\left(\tau_{(k+1) \cdot(j-1)+N / 2+1}, \ldots, \tau_{(k+1) \cdot j+N / 2}\right) \text { for } j=1, \ldots, q-1 \\
& T_{q}^{2}=\left(\tau_{(k+1) \cdot(q-1)+N / 2+1}, \ldots, \tau_{N}\right)
\end{aligned}
$$

$$
r \leftarrow\left\lceil\log _{2} q\right\rceil+1
$$

Define new transition elements $\left\{s_{1}, \ldots, s_{r}\right\}$ with $T \cap\left\{s_{1}, \ldots, s_{r}\right\}=\varnothing$
for $j=1$ to $q-1$ do
$i \leftarrow$ largest value in $\{1, \ldots, r-1\}$ such that 2^{i-1} divides j
$T_{j}^{\prime 1} \leftarrow\left(T_{j}^{1}, s_{i}\right)$
$T_{j}^{\prime 2} \leftarrow\left(T_{j}^{2}, s_{i}\right)$
$T_{q}^{\prime 1} \leftarrow\left(T_{q}^{1}, s_{r}\right)$
$T_{q}^{\prime 2} \leftarrow\left(T_{q}^{2}, s_{r}\right)$
return $T^{\prime}=\left(T_{1}^{\prime 1}, T_{2}^{\prime 1}, \ldots, T_{q}^{\prime 1}, T_{1}^{\prime 2}, T_{2}^{\prime 2}, \ldots, T_{q}^{\prime 2}\right)$

Example 2 demonstrates how Construction 3.2 is applied to the transition sequence T of a $(10,3)$ circuit code. There (and elsewhere) we use $T^{\prime i}$ to denote the segment $\left(T_{1}^{\prime i}, \ldots, T_{q}^{\prime i}\right)$ of T^{\prime}.
Example 2. A transition sequence $T=\left(\tau_{1}, \ldots, \tau_{N}\right)$ is symmetric if $T^{1}=$ $\left(\tau_{1}, \ldots, \tau_{N / 2}\right)=\left(\tau_{N / 2+1}, \ldots, \tau_{N}\right)=T^{2}$. Consider the transition sequence T of a symmetric (10,3) circuit code of length $N=72$ (from [20]) with $T^{1}=T^{2}=(\underbrace{5,8,1,9}_{T_{1}^{i}}, \underbrace{6,10,1,8}_{T_{2}^{i}}, \underbrace{2,9,1,10}_{T_{3}^{i}}, \underbrace{7,8,1,9}_{T_{4}^{i}}, \underbrace{5,10,1,8}_{T_{5}^{i}}, \underbrace{3,9,1,10}_{T_{6}^{i}}$,
$\underbrace{6,8,1,9}_{T_{7}^{i}}, \underbrace{7,10,1}_{T_{8}^{i}}, 8, \underbrace{4,9,1,10}_{T_{9}^{i}})$.
Here $q=\left\lceil\frac{72}{2(3+1)}\right\rceil=9, r=\left\lceil\log _{2} 9\right\rceil+1=5,\left\{t_{1}, \ldots, t_{m}\right\}=\{1, \ldots, 10\}$, and $\left\{s_{1}, \ldots, s_{5}\right\}=\{11, \ldots, 15\}$. Apply Construction 3.2 to T by splitting T into T^{1} and T^{2} and subdividing T^{i} into $q=9$ segments as indicated. Then insert one of $\{11, \ldots, 15\}$ at the end of each T_{j}^{i} to get $T_{j}^{\prime i}$ as follows: $T^{\prime i}=(\underbrace{5,8,1,9,11}_{T_{1}^{\prime i}}, \underbrace{6,10,1,8,12}_{T_{2}^{\prime i}}, \underbrace{2,9,1,10,11}_{T_{3}^{\prime i}}, \underbrace{7,8,1,9,13}_{T_{4}^{\prime i}}$, $\underbrace{5,10,1,8,11}_{T_{5}^{\prime i}}, \underbrace{3,9,1,10,12}_{T_{6}^{\prime i}}, \underbrace{6,8,1,9,11}_{T_{7}^{\prime i}}, \underbrace{7,10,1,8,14}_{T_{8}^{\prime i}}, \underbrace{4,9,1,10,15}_{T_{9}^{\prime i}})$

The sequence $T^{\prime}=\left(T^{1}, T^{2}\right)$ will be the transition sequence for a $(15,4)$ circuit code of length 90.

An important property of Construction 3.2 is that any segment of T^{\prime} of length $\geq k+2$ contains at least one member of $\left\{s_{1}, \ldots, s_{r}\right\}$. This is easily shown as follows. Since $N(=|T|)$ is even we have $\left|T^{1}\right|=\left|T^{2}\right|=$ $N / 2$, and therefore $q=\left\lceil\frac{N / 2}{k+1}\right\rceil=\left\lceil\frac{\left|T^{1}\right|}{k+1}\right\rceil=\left\lceil\frac{\left|T^{2}\right|}{k+1}\right\rceil$. Because $T_{1}^{1}, \ldots, T_{q-1}^{1}$ and $T_{1}^{2}, \ldots, T_{q-1}^{2}$ all contain $k+1$ elements, this means $\left|T_{q}^{1}\right|=\left|T_{q}^{2}\right| \in$ $\{1, \ldots, k+1\}$. Finally, since the segments $T_{i}^{\prime 1}\left(T_{i}^{\prime 2}\right)$ of T^{\prime} are formed by appending an element of $\left\{s_{1}, \ldots, s_{r}\right\}$ to the end of $T_{i}^{1}\left(T_{i}^{2}\right)$ for $i=1, \ldots, q$ we see that any segment of T^{\prime} with length $\geq k+2$ must contain the end of a segment $T_{i}^{\prime 1}$ or $T_{i}^{\prime 2}$ and therefore contains an element of $\left\{s_{1}, \ldots, s_{r}\right\}$.

The sequence $T^{\prime}=\left(\tau_{1}^{\prime}, \ldots, \tau_{N^{\prime}}^{\prime}\right)$ generated by Construction 3.2 naturally defines a sequence of vertices $\left(x_{1}^{\prime}, \ldots, x_{N^{\prime}}^{\prime}\right)$ in $I(n+r)$ as follows. Fix $x_{1}^{\prime}=\overrightarrow{0}$ and define x_{i+1}^{\prime} as the vertex equal to x_{i}^{\prime} in all positions except τ_{i}^{\prime}, for $1 \leq i \leq N^{\prime}-1$. Clearly x_{i}^{\prime} is adjacent to x_{i+1}^{\prime} for $1 \leq i \leq N^{\prime}-1$. The next two results establish that all the x_{i}^{\prime} are distinct and that $x_{N^{\prime}}^{\prime}$ is adjacent to x_{1}^{\prime}. Hence $C^{\prime}=\left(x_{1}^{\prime}, \ldots, x_{N^{\prime}}^{\prime}\right)$ is a circuit.

Lemma 3.3. Let C be an (n, k) circuit code of length $N \geq 2(k+1)$ and transition sequence T. Let $T^{\prime}=\left(\tau_{1}^{\prime}, \ldots, \tau_{N^{\prime}}^{\prime}\right)$ be the transition sequence resulting from applying Construction 3.2 to T. For $1 \leq i<j \leq N^{\prime}$ let \hat{T} be the segment $\left(\tau_{i}^{\prime}, \ldots, \tau_{j-1}^{\prime}\right)$ of T^{\prime}. Then some transition element of \hat{T} appears an odd number of times. Furthermore, if \hat{T} contains one of the transition elements $\left\{s_{1}, \ldots, s_{r}\right\}$, then some $s_{p} \in\left\{s_{1}, \ldots, s_{r}\right\}$ appears in \hat{T} exactly once.

Proof. Let $\left\{t_{1}, \ldots, t_{m}\right\}$ be the transition elements of T, then the transition elements of T^{\prime} are $\left\{t_{1}, \ldots, t_{m}\right\} \cup\left\{s_{1}, \ldots, s_{r}\right\}$. Let $A=\hat{T} \cap\left\{t_{1}, \ldots, t_{m}\right\}$ and let $B=\hat{T} \cap\left\{s_{1}, \ldots, s_{r}\right\}$. If $|B|=0$ then $|A| \leq k+1$, so \hat{T} is a segment of T of length $\leq k+1$. By Lemma 3.1 this means that every element of \hat{T} is distinct, appearing exactly once.

Now suppose $|B|>0$, we will show some $s_{p} \in\left\{s_{1}, \ldots, s_{r}\right\}$ appears in \hat{T} exactly once. Either τ_{i}^{\prime} or τ_{j-1}^{\prime} are both in $T^{\prime 1}$ or both in $T^{\prime 2}$, or $\tau_{i}^{\prime} \in T^{1}$ and $\tau_{j-1}^{\prime} \in T^{\prime 2}$. Suppose τ_{i}^{\prime} and τ_{j-1}^{\prime} are both in $T^{\prime 1}$ and let s_{p} denote the maximum index member of B. Then s_{p} appears in \hat{T} exactly once, otherwise (by construction) s_{w} appears in \hat{T} between two appearances of s_{p} for some $w>p$. But this contradicts the definition of s_{p}. The argument for when τ_{i}^{\prime} and $\tau_{j-1}^{\prime} \in T^{\prime 2}$ is identical.

Now suppose that $\tau_{i}^{\prime} \in T^{\prime 1}$ and $\tau_{j-1}^{\prime} \in T^{\prime 2}$, then $s_{r} \in \hat{T}$. The transition element s_{r} appears in T^{\prime} only in position $\frac{N^{\prime}}{2}=\left(\frac{N}{2}+q\right)$ and $N^{\prime}(=N+2 q)$. Since $j \leq N^{\prime}$ and \hat{T} ends with element τ_{j-1}^{\prime}, we see that $\tau_{N^{\prime}}^{\prime} \notin \hat{T}$. Thus s_{r} occurs exactly once in \hat{T}.

Corollary 3.4. Let C be an (n, k) circuit code of length $N \geq 2(k+1)$ and transition sequence T. Let $T^{\prime}=\left(\tau_{1}^{\prime}, \ldots, \tau_{N^{\prime}}^{\prime}\right)$ be the transition sequence resulting from applying Construction 3.2 to T, and let $\left(x_{1}^{\prime}, \ldots, x_{N^{\prime}}^{\prime}\right)$ be the vertex sequence defined by T^{\prime}. Then $\left(x_{1}^{\prime}, \ldots, x_{N^{\prime}}^{\prime}\right) d e-$ fines a circuit.

Proof. Define $x_{N^{\prime}+1}^{\prime}$ as being equal to $x_{N^{\prime}}^{\prime}$ in all positions except $\tau_{N^{\prime}}^{\prime}$. Then travelling from x_{1}^{\prime} to $x_{N^{\prime}+1}^{\prime}$ requires using all of the transitions in T^{\prime}. The transition elements of T^{\prime} are $\left\{t_{1}, \ldots, t_{m}\right\} \cup\left\{s_{1}, \ldots, s_{r}\right\}$. Each t_{i} appears in T^{\prime} the same number of times that it appears in T, an even number. By construction, each s_{j} appears an equal number of times in $T^{\prime 1}$ and $T^{\prime 2}$, so s_{j} appears an even number of times in T^{\prime}. Since every transition element of T^{\prime} appears an even number of times, we conclude that $x_{1}^{\prime}=x_{N^{\prime}+1}^{\prime}$. Thus in $\left(x_{1}^{\prime}, \ldots, x_{N^{\prime}}^{\prime}\right)$ every pair of cyclically consecutive vertices is adjacent. Now let $x_{i}^{\prime}, x_{j}^{\prime} \in\left(x_{1}^{\prime}, \ldots, x_{N^{\prime}}^{\prime}\right)$ with $i<j$, then $\hat{T}=\left(\tau_{i}^{\prime}, \ldots, \tau_{j-1}^{\prime}\right)$ is a transition sequence between x_{i}^{\prime} and x_{j}^{\prime} in T^{\prime}. By Lemma 3.3 some transition element of \hat{T} appears an odd number of times and hence x_{i}^{\prime} and x_{j}^{\prime} are distinct. Hence $\left(x_{1}^{\prime}, \ldots, x_{N^{\prime}}^{\prime}\right)$ are all distinct and $\left(x_{1}^{\prime}, \ldots, x_{N^{\prime}}^{\prime}\right)$ defines a circuit.

From Corollary 3.4 we see that T^{\prime} defines a circuit $C^{\prime}=\left(x_{1}^{\prime}, \ldots, x_{N^{\prime}}^{\prime}\right)$ in $I(n+r)$, and by construction, $N^{\prime}=N+2 q$. Thus to prove Theorem 1.3 we only need to show that C^{\prime} has spread $k+1$. To do so we require a technical result. If x is a vertex of $I(n)$ and $\tilde{n}<n$, we denote by x^{*} the "natural" projection of x onto $I(\tilde{n})$ formed by taking the first \tilde{n} elements of the binary vector x. There is an important relationship between the transition sequence T^{\prime} from Construction 3.2 and the transition sequence T of the underlying (n, k) circuit code C.

Lemma 3.5. Let C be an (n, k) circuit code of length $N \geq 2(k+1)$ with transition sequence T. Let $T^{\prime}=\left(\tau_{1}^{\prime}, \ldots, \tau_{N^{\prime}}^{\prime}\right)$ and $C^{\prime}=\left(x_{1}^{\prime}, \ldots, x_{N^{\prime}}^{\prime}\right)$ be the transition sequence and circuit code (in dimension $n+r$) resulting from applying Construction 3.2 to T. Let $x_{i}^{\prime}, x_{j}^{\prime} \in C^{\prime}$ with $i<j$ and let \hat{T} be a shortest transition sequence in T^{\prime} between x_{i}^{\prime} to x_{j}^{\prime}. Then $\hat{T} \cap\left\{t_{1}, \ldots, t_{m}\right\}$ is a shortest transition sequence in T between $x_{i}^{* *}$ and $x_{j}^{* *} \in C$.

Proof. Let $x_{i}^{\prime}, x_{j}^{\prime} \in C^{\prime}$ with $i<j$, then there are two segments in T^{\prime} between x_{i}^{\prime} and x_{j}^{\prime}. Let \hat{T} denote the shorter of these (chosen arbitrarily if both segments have the same length) and let $\hat{T}^{\text {C }}$ denote its complement. Then \hat{T}^{\complement} is also a segment between x_{i}^{\prime} and x_{j}^{\prime} in T^{\prime}. Also note that $x_{i}^{\prime *}$ and $x_{j}^{\prime *} \in C$. It is necessary that the subsequence $\hat{T} \cap\left\{t_{1}, \ldots, t_{m}\right\}$ is a segment between $x_{i}^{\prime *}$ and $x_{j}^{\prime *}$ in T. Since there are only two segments between $x_{i}^{\prime *}$ and $x_{j}^{\prime *}$ in T, and they partition T, we conclude that $\hat{T}^{\complement} \cap\left\{t_{1}, \ldots, t_{m}\right\}$ is the other segment. Because $|\hat{T}| \leq\left|\hat{T}^{\complement}\right|,|\hat{T}| \leq \frac{N}{2}+q$ and \hat{T} contains no transitions spaced $\frac{N}{2}+q$ apart in T^{\prime} (e.g. τ_{1}^{\prime} and $\tau_{N / 2+q+1}^{\prime}$ are spaced $\frac{N}{2}+q$ apart in T^{\prime}, as are $\tau_{N+2 q}^{\prime}$ and $\left.\tau_{N / 2+q}^{\prime}\right)$. For any $\tau_{\alpha}^{\prime}, \tau_{\beta}^{\prime} \in T^{\prime}$ spaced $\frac{N}{2}+q$ apart, if $\tau_{\alpha}^{\prime} \in \hat{T}$ then $\tau_{\beta}^{\prime} \in \hat{T}^{\mathrm{C}}$. Also, if τ_{α}^{\prime} is the v th element of $T^{\prime 1}$ then τ_{β}^{\prime} is the v th element of $T^{\prime 2}$ (and similarly if $\tau_{\alpha}^{\prime} \in T^{2}$ and $\left.\tau_{\beta}^{\prime} \in T^{\prime 1}\right)$. Since elements of $\left\{s_{1}, \ldots, s_{r}\right\}$ are located in the same relative positions of $T^{\prime 1}$ and $T^{\prime 2}, \tau_{\alpha}^{\prime} \in\left\{t_{1}, \ldots, t_{m}\right\} \Longleftrightarrow \tau_{\beta}^{\prime} \in\left\{t_{1}, \ldots, t_{m}\right\}$ (even if $\tau_{\alpha}^{\prime} \neq \tau_{\beta}^{\prime}$). So for every $\tau_{\alpha}^{\prime} \in \hat{T} \cap\left\{t_{1}, \ldots, t_{m}\right\}$ there is a corresponding $\tau_{\beta}^{\prime} \in \hat{T}^{\complement} \cap\left\{t_{1}, \ldots, t_{m}\right\}$ (and no other $\tau_{\gamma}^{\prime} \in \hat{T} \cap\left\{t_{1}, \ldots, t_{m}\right\}$ corresponds to this τ_{β}^{\prime}). Thus $\left|\hat{T} \cap\left\{t_{1}, \ldots, t_{m}\right\}\right| \leq\left|\hat{T}^{\complement} \cap\left\{t_{1}, \ldots, t_{m}\right\}\right|$. Hence $\hat{T} \cap\left\{t_{1}, \ldots, t_{m}\right\}$ is a shortest segment between $x_{i}^{\prime *}$ and $x_{j}^{\prime *}$ in T.

Figure 1 illustrates this, showing a $(3,2)$ circuit code C with transition sequence $T=(2,1,3,2,1,3)$ (on the left) and the $(4,3)$ circuit code C^{\prime} (on the right) with transition sequence $T^{\prime}=(2,1,3,4,2,1,3,4)$ resulting from Construction 3.2. E.g. for $x_{i}^{\prime}=1100$ and $x_{j}^{\prime}=1011$ the shortest path in C^{\prime} between x_{i}^{\prime} and x_{j}^{\prime}, indicated by dashed lines, "contains as a subpath" the shortest path in C between $x_{i}^{\prime *}=110$ and $x_{j}^{\prime *}=101$.

Figure 1: A $(3,2)$ Circuit Code and a $(4,3)$ Circuit Code.

We now have everything we need to proceed to the main proof.

Proof of Theorem 1.3. Let C be an (n, k) circuit code with length $N \geq$ $2(k+1)$ and transition sequence T. Apply Construction 3.2 to T to get a new transition sequence $T^{\prime}=\left(\tau_{1}^{\prime}, \ldots, \tau_{N^{\prime}}^{\prime}\right)$ and vertex sequence $\left(x_{1}^{\prime}, \ldots, x_{N^{\prime}}^{\prime}\right)$. By Corollary 3.4, $C^{\prime}=\left(x_{1}^{\prime}, \ldots, x_{N^{\prime}}^{\prime}\right)$ is a circuit and by construction $N^{\prime}=$ $N+2 q$, so it only remains to be shown that C^{\prime} has spread $k+1$. By Lemma 1.2 it suffices to show for all vertices $x_{i}^{\prime}, x_{j}^{\prime} \in C^{\prime}$ with $i<j$ that $d_{C^{\prime}}\left(x_{i}^{\prime}, x_{j}^{\prime}\right) \geq k+1 \Rightarrow d_{I(n+r)}\left(x_{i}^{\prime}, x_{j}^{\prime}\right) \geq k+1$.

Suppose that x_{i}^{\prime} and x_{j}^{\prime} are vertices of C^{\prime} with $d_{C^{\prime}}\left(x_{i}^{\prime}, x_{j}^{\prime}\right) \geq k+1$. Let \hat{T} denote the segment of T^{\prime} that is the shorter transition sequence between x_{i}^{\prime} and x_{j}^{\prime}, and let \hat{T}^{\complement} denote its complement. If $|\hat{T}|=\left|\hat{T}^{\complement}\right|$ either segment may be chosen. Note that \hat{T} may "start" in $T^{\prime 1}$ and end in $T^{\prime 2}$, or the reverse, or may be entirely contained in $T^{\prime 1}$ or $T^{\prime 2}$. Finally, let $A=\hat{T} \cap\left\{t_{1}, \ldots, t_{m}\right\}$ and $B=\hat{T} \cap\left\{s_{1}, \ldots, s_{r}\right\}$, so $d_{C^{\prime}}\left(x_{i}^{\prime}, x_{j}^{\prime}\right)=|A|+|B|$.

If $|B|=0$ then $|A|=k+1$. In this case \hat{T} is a segment of T of length $k+1$, and by Lemma 3.1 these transition elements are all distinct. So $d_{I(n)}\left(x_{i}^{\prime *}, x_{j}^{\prime *}\right)=k+1$ and $d_{I(n+r)}\left(x_{i}^{\prime}, x_{j}^{\prime}\right)=k+1$, and we are done.

Now suppose that $|B|>0$. First we will show that some $s_{p} \in\left\{s_{1}, \ldots, s_{r}\right\}$ occurs an odd number of times in \hat{T}. If $\hat{T}=\left(\tau_{i}^{\prime}, \ldots, \tau_{j-1}^{\prime}\right)$ then this follows from Lemma 3.3. Otherwise, then we have $\hat{T}^{\complement}=\left(\tau_{i}^{\prime}, \ldots, \tau_{j-1}^{\prime}\right)$ and $\left|\hat{T}^{\complement}\right| \geq$ $\frac{1}{2} N^{\prime}=\frac{1}{2}(N+2 q) \geq \frac{1}{2}(2(k+2))=k+2$. By design of Construction 3.2 this means that $\hat{T}^{\complement} \cap\left\{s_{1}, \ldots, s_{r}\right\} \neq \varnothing$, so by Lemma 3.3 some $s_{p} \in\left\{s_{1}, \ldots, s_{r}\right\}$ occurs exactly once in $\hat{T}^{\text {C }}$. Because s_{p} occurs an even number of times in T^{\prime}, and since \hat{T} and \hat{T}^{\complement} are complements in T^{\prime}, s_{p} occurs an odd number of times in \hat{T}. In both cases, some $s_{p} \in\left\{s_{1}, \ldots, s_{r}\right\}$ appears an odd number of times in \hat{T}.

Now $d_{I(n+r)}\left(x_{i}^{\prime}, x_{j}^{\prime}\right)=d_{I(n)}\left(x_{i}^{\prime *}, x_{j}^{\prime *}\right)+$ the number of members of $\left\{s_{1}, \ldots, s_{r}\right\}$ occuring an odd number of times in \hat{T}. If $d_{I(n)}\left(x_{i}^{\prime *}, x_{j}^{\prime *}\right) \geq k$ this is $\geq k+1$. Suppose $d_{I(n)}\left(x_{i}^{\prime *}, x_{j}^{\prime *}\right)<k$. By Lemma 3.5 A is a shortest transition sequence between $x_{i}^{\prime *}$ and $x_{j}^{\prime *}$ in T. Thus $|A|=d_{C}\left(x_{i}^{\prime *}, x_{j}^{\prime *}\right)=d_{I(n)}\left(x_{i}^{\prime *}, x_{j}^{\prime *}\right)$ since C has spread k. Furthermore, since $|A|<k$ we have $|B| \leq 2$, and since consecutive elements of B differ when $|\hat{T}| \leq \frac{N}{2}+q$ all elements of B must occur exactly once. Thus $d_{I(n+r)}\left(x_{i}^{\prime}, x_{j}^{\prime}\right)=|A|+|B|=d_{C^{\prime}}\left(x_{i}^{\prime}, x_{j}^{\prime}\right) \geq k+1$.

4 A New Lower Bound for $K(n, 4)$

Singleton [20] remarks that for $k \geq 4$ and even, the best lower bound available for $K(n, k)$ seems to be applying the third lower bound given in Table 2 to $K(n, k+1$) (as every circuit code of spread $k+1$ is also a circuit code of spread k). In particular, for $k=4$ this gives $K(n, 4) \geq 6 \cdot 2^{\lfloor 2 n / 6\rfloor-1}$. Subsequently, Klee [14] established the much stronger asymptotic result: $K(n, 4) \succ \delta^{n}$ for $0<\delta<3^{1 / 3}$, suggesting that non-asymptotic lower bounds stronger than $K(n, 4) \geq 6 \cdot 2^{\lfloor 2 n / 6\rfloor-1}$ may be possible. We will now prove that Theorem 1.3 gives a non-asymptotic lower bound that is stronger than $K(n, 4) \geq 6 \cdot 2^{\lfloor 2 n / 6\rfloor-1}$ for $n \geq 86$.

First we establish the following claim, our argument is a minor modification of the one given in Chapter 17 of [9].

Lemma 4.1. For $n \geq 6$ there exists an $(n, 3)$ circuit code C with length N divisible by 8 and satisfying $32 \cdot 3^{(n-8) / 3} \leq N \leq \frac{24}{22} 32 \cdot 3^{(n-8) / 3}$.

Proof. Let C be an $(n, 3)$ circuit code with transition sequence T. Suppose that t_{i} occurs m times in T. Construction $S 5$ of [9] states that there is an $(n+3,3)$ circuit code C^{\prime} with length $N^{\prime}=N+8 m$, and t_{i} occurs $3 m$ times in the new transition sequence T^{\prime}. Note that if N is divisible by 4 and t_{i} appears $\frac{N}{4}$ times in T, then $N^{\prime}=3 N$ and t_{i} appears $3 m=\frac{N^{\prime}}{4}$ times in T^{\prime}.

For $n=6,7,8$ consider the following transition sequences for $(n, 3)$ circuit codes. Note that $\left|T_{6}\right|=16,\left|T_{7}\right|=24$, and $\left|T_{8}\right|=32$. Also, 5 occurs 4 times in $T_{6}, 2$ occurs 6 times in T_{7}, and 8 occurs 8 times in T_{8}.

$$
\begin{aligned}
& T_{6}=(1,5,2,6,3,5,4,6,1,5,2,6,3,5,4,6) \\
& T_{7}=(5,2,6,1,7,2,5,3,6,2,7,4,5,2,6,1,7,2,5,3,6,2,7,4) \\
& T_{8}=(5,2,6,8,1,7,2,8,5,3,6,8,2,7,4,8,5,2,6,8,1,7,2,8,5,3,6,8,2,7,4,8)
\end{aligned}
$$

Therefore by Construction S5 we see that for any $p \in \mathbb{N}$, in dimension $n=6+3 p$ there exists an $(n, 3)$ circuit code with length $N=16 \cdot 3^{(n-6) / 3} \in$ $\left(32 \cdot 3^{(n-8) / 3}, \frac{16}{15} 32 \cdot 3^{(n-8) / 3}\right)$, in dimension $n=7+3 p$ there exists an $(n, 3)$ circuit code with length $N=24 \cdot 3^{(n-7) / 3} \in\left(32 \cdot 3^{(n-8) / 3}, \frac{24}{22} 32 \cdot 3^{(n-8) / 3}\right)$, and in dimension $n=8+3 p$ there exists an $(n, 3)$ circuit code with length $N=32 \cdot 3^{(n-8) / 3}$.

Proof of Theorem 1.4. Theorem 1.3 implies $K(n+r, 4) \geq N+2\left\lceil\frac{N}{2 \cdot 4}\right\rceil \geq \frac{5}{4} N$, where $N \geq 2 \cdot 4$ is the length of an $(n, 3)$ circuit code, $q=\left\lceil\frac{N}{2 \cdot 4}\right\rceil$, and
$r=\left\lceil\log _{2} q\right\rceil+1$. From Lemma 4.1 we know that for $n \geq 6$ there exists an $(n, 3)$ circuit code C of length N divisible by 8 , and $32 \cdot 3^{(n-8) / 3} \leq N \leq$ $\frac{24}{22} 32 \cdot 3^{(n-8) / 3}$. Using this code we have $K(n+r, 4) \geq 40 \cdot 3^{(n-8) / 3}, \bar{q}=\frac{\bar{N}}{2 \cdot 4}$ (by divisibility), and $r=\left\lceil\log _{2} \frac{N}{2 \cdot 4}\right\rceil+1 \leq\left\lfloor\log _{2} \frac{N}{2 \cdot 4}\right\rfloor+2$.

Now $2^{.53}>3^{1 / 3}$ so $r \leq 2+\left\lfloor\log _{2} \frac{24}{22} 4 \cdot 3^{-8 / 3} \cdot 2^{.53 n}\right\rfloor \leq .53 n$. Hence $K(\lfloor 1.53 n\rfloor, 4) \geq 40 \cdot 3^{(n-8) / 3}$ for $n \geq 6$. And making the change of variables $u=1.53 n$ we get $K(\lfloor u\rfloor, 4) \geq 40 \cdot 3^{(\lfloor .6535 u\rfloor-8) / 3}$.

A simple analysis shows that the lower bound of Theorem 1.4 exceeds $6 \cdot 2^{\lfloor 2 n / 6\rfloor-1}$ for $n \geq 86$.

5 Computational Results

5.1 Methodology

The efficacy of Construction 3.2 was tested by applying it to circuit codes of spreads 2-9 in dimensions 3-30. Table 3 lists the greatest lower bound found for each (n, k) combination. The table was constructed as follows. For spreads 2-7 and dimensions $3-30$ we seeded the table with empirical results from $[20,5,11,17,2]$ which collectively survey all empirical records of which we are aware, for spreads 8 and 9 we seeded the table by using the exact bounds of Table 1 and the non-asymptotic lower bounds of Table 2.

Next, we applied Constructions 2.1-2.4 (collectively the "Singleton" constructions), the construction of Deimer (Construction 2.5), and the construction of Klee (Construction 2.6). Because these constructions were applied sequentially we iterated applying the constructions until there was no improvement in any entry of the table. To this "initial" table we then applied Construction 3.2 to the column corresponding to codes of spread k, replacing the appropriate entry in the neighboring column of the table (for codes of spread $k+1$) if a larger lower bound was found. Each time after applying Construction 3.2 to codes of spread k we repeated the iterative application of the constructions of Singleton, Deimer, and Klee to propagate any further improvements in the lower bounds before applying the construction to codes of spread $k+1$. Finally, after applying the construction to codes of all spreads we iteratively applied the constructions from Singleton, Deimer, and Klee once more.

Construction 2.6 was applied to our table as follows. Let C be an (n, k) circuit code with length $N>2(k+1)^{2}$, and let $T=\left(\tau_{1}, \ldots, \tau_{N}\right)$ be its transition sequence with transition elements $\left\{t_{1}, \ldots, t_{m}\right\}$. Split T into $T^{1}=$ $\left(\tau_{1}, \ldots, \tau_{N / 2}\right), T^{2}=\left(\tau_{N / 2+1}, \ldots, \tau_{N}\right)$ and subdivide T^{i} into $q=\left\lceil\frac{N}{2(k+1)}\right\rceil$ segments $T_{1}^{i}, \ldots, T_{q}^{i}$ of length $\leq k+1$ as in Construction 3.2 (where only segment T_{q}^{i} may have length $<k+1$). Note that $q>k+1$. For $i=1,2$ define new transition sequences $T^{1}=\left(T_{1}^{\prime 1}, \ldots, T_{q}^{\prime 1}\right)$ and $T^{\prime 2}=\left(T_{1}^{\prime 2}, \ldots, T_{q}^{\prime 2}\right)$ where $T_{j}^{\prime i}=\left(T_{j}^{i}, t_{m+1}\right)$ for $j \leq p=(k+1)\left\lceil\frac{N}{2(k+1)}\right\rceil-\frac{N}{2}$, and $T_{j}^{\prime i}=T_{j}^{i}$ otherwise. Observe that $0 \leq p \leq k+1<q$, so the $T_{j}^{\prime i}$ are well-defined. Finally combine $T^{\prime 1}, T^{\prime 2}$ into $T^{\prime}=\left(T^{\prime 1}, T^{\prime 2}\right)$. Observe that t_{m+1} occurs an even number of times in T^{\prime}, and any two occurences of t_{m+1} are separated by a segment of T^{\prime} which contains as a subsegment a segment of T of length $\geq k+1$. From this it can be shown that T^{\prime} defines an $n+1$ dimensional circuit code C^{\prime} of spread k (but not necessarily of spread $k+1$) and length $N^{\prime}=N+2 p=2(k+1)\left\lceil\frac{N}{2(k+1)}\right\rceil$. Thus C^{\prime} satisfies the divisibility criterion of Construction 2.6 (for C_{1}). Because this method does not generate all $(n+1, k)$ circuit codes with length divisible by $k+1$, we also indicate in Table 3 when an entry exceeds the asymptotic lower bounds from Table 2 which are derived from Construction 2.6.

5.2 Discussion of Computational Results

Our construction found several new circuit codes for spreads of 7 and 8. Because codes of spreads 2-7 and dimensions $3-30$ have been wellstudied (see $[11,17]$ for surveys) the improvements noted in Table 3 for codes of spread 7 are perhaps the most significant. All of our new circuit codes of spread 7 and 8 are generated from the $(17,6,204)$ circuit code of $[18]$, the $(15,7,60)$ and $(17,7,102)$ circuit codes of $[11]$, and the $(18,7,116)$ circuit code resulting from applying Construction 2.1 to the $(17,7,102)$ circuit code. Applying Construction 3.2 to these 4 circuit codes, we have: $(17,6,204) \rightarrow(22,7,234),(15,7,60) \rightarrow(18,8,68),(17,7,102) \rightarrow$ $(21,8,116)$, and $(18,7,116) \rightarrow(22,8,132)$. From these 4 new circuit codes, all of which are of record length, we generate the remaining circuit codes as follows.

Iteratively apply Construction 2.1 and Construction 2.3 to the
$(22,7,234)$ circuit code (and the new circuit codes these constructions generate) to get the $(23,7,266),(24,7,310),(26,7,466),(27,7,532),(28,7,618)$, and $(30,7,930)$ circuit codes. Iteratively apply Construction 2.2 and Construction 2.4 to the $(21,8,116)$ and $(22,8,132)$ circuit codes (and the new

Table 3: Lower Bounds for $K(n, k)$ (Prior Best Bound in Parentheses).

n / k	2	3	4	5	6	7	8	9
3	6 c	6 c	6 c	6 c	6 c	6 c	6 c	6 c
4	8 c	8 c	8 c	8 c	8 c	8 c	8 c	8 c
5	14 c	10 c						
6	26 c	16 c	12 c					
7	48 c	24 c	14 c					
8	96 c	36 c	22 c	16 c				
9	188	64	30 c	24 c	18 c	18 c	18 c	18 c
10	362	102	46 c	28 c	20 c	20 c	20 c	20 c
11	668	160	70	40 c	30 c	22 c	22 c	22 c
12	1340	288	102	60	36 c	32 c	24 c	24 c
13	2584	494	182	80	50 c	36 c	26 c	26 c
14	4934	812	280	106	68	48 c	38 c	28 c
15	9868	1380	480	210	88	60	42	40 c
16	19740	2240	768	288	118	76	46	44 c
17	39840	3910	1224	476	204	102	54	48
18	78848	5212	1530	570	238	116	$68(60) \mathrm{ab}$	52
19	157696	7818	2040	712	284	134	78	60
20	315392	10424	2688	950	330	152	86	80
21	630784	15634	3400	1140	436	198	$116(98) \mathrm{ab}$	88
22	1261568	20848	4488	1422	510	$234(228) \mathrm{ab}$	$132(114) \mathrm{ab}$	100
23	2523136	31266	5910	1898	608	$266(262) \mathrm{b}$	$148(128) \mathrm{b}$	110
24	5046272	41696	7480	2280	714	$310(304) \mathrm{b}$	$168(158) \mathrm{b}$	124
25	10092544	62530	9870	2846	932	390	$188(176) \mathrm{b}$	160
26	20185088	83392	13248	3794	1086	$466(452) \mathrm{b}$	$236(202) \mathrm{ab}$	176
27	40370176	125058	20304	4560	1304	$532(518) \mathrm{b}$	$272(234) \mathrm{ab}$	200
28	80740352	166784	34704	5690	1530	$618(608) \mathrm{b}$	$308(268) \mathrm{b}$	222
29	161480704	250114	57246	7586	1996	774	$348(328) \mathrm{b}$	248
30	322961408	333568	97846	9120	2328	$930(900) \mathrm{b}$	$396(368) \mathrm{b}$	320

$\mathrm{a}=$ prior record also exceeded directly by applying Construction 3.2
$\mathrm{b}=$ record exceeds Klee's asymptotic lower bound
$\mathrm{c}=$ value known to be optimal
circuit codes these constructions generate) to get the (23, 8, 148), $(24,8,168)$, $(25,8,188),(26,8,236),(27,8,272),(28,8,308),(29,8,348)$, and $(30,8,396)$ circuit codes.

Using this approach 4 out of the 18 new circuit codes result directly from applying Construction 3.2. Construction 3.2 also directly results in circuit codes that are longer than the previous record $(26,8,202)$ and $(27,8,234)$ circuit codes, but these circuit codes are shorter than the ones resulting from iteratively applying Constructions 2.1-2.4 to the $(22,7,234),(18,8,68)$, $(21,8,116)$, and $(22,8,132)$ circuit codes.

The chief advantage of our construction is that it is very easy to implement, allowing the better studied codes of smaller spreads to be leveraged to generate codes of larger spreads, where the spread is too large for computer search. This adds another construction (in addition to Constructions 2.1 - 2.6) to generate non-trivial codes for large spreads. As the results for spreads $k=7,8$ indicate, the construction is additive to Constructions 2.12.6. However the results for spread $k+1=9$ indicate that the success of this approach relies on good starting codes for spread k.

6 Conclusions

In this note we presented a simple method for constructing a circuit code of spread $k+1$ from a circuit code of spread k. This construction leads to 18 new record code lengths for circuit codes of spread $k=7,8$ and in dimensions $22 \leq n \leq 30$ by leveraging the record length circuit codes of spread 6 and 7 from [18] and [11]. We also derived a new lower bound on the length of circuit codes of spread 4 , which improves upon the bound suggested by Singleton for $n \geq 86$.

Some of the records in Table 3 stood for at least 32 years before being broken by the method described here, however we believe that further improvements of the lower bounds on $K(n, k)$ are still possible. In particular, Construction 5 from [20] describes how to extend an ($n, 7$) circuit code under certain conditions on how close a specific pair of transition elements appear in the transition sequence. While applying that construction directly does not improve the lower bounds in the table (we tried!) the transition sequences arising from combining Construction 3.2 with the construction method of [18] are highly structured, suggesting that a modification of that approach may succeed.

Acknowledgements: The author thanks Stephen Chestnut and Eric Harley for generously reviewing earlier versions of this paper, and for many helpful suggestions which greatly improved the final version. The author especially thanks an anonymous referee for suggesting the pseudocode presentation of Construction 3.2, and for many helpful comments regarding the proof of Theorem 1.3 and the presentation of our numerical results.

References

[1] H. L. Abbot and M. Katchalski. On the construction of snake in the box codes. Utilitas Mathematica, 40:97-116, 1991.
[2] D. Allison and D. Paulusma. New bounds for the snake-in-the-box problem. arXiv:1603.05119, 2016.
[3] D. A. Casella and W. D. Potter. New lower bounds for the snake-in-the-box problem: Using evolutionary techniques to hunt for snakes. In Proceedings of the Eighteenth International Florida Artificial Intelligence Research Society Conference, pages 264-269, 2005.
[4] Y. Chebiryak and D. Kroening. An efficient SAT encoding of circuit codes. In International Symposium on Information Theory and Its Applications, 2008.
[5] K. Deimer. Some new bounds on the maximum length of circuit codes. IEEE Transactions on Information Theory, 30:754-756, 1984.
[6] P. A. Diaz Gomez and D. F. Hougan. Genetic algorithms for hunting snakes in hypercubes: Fitness function analysis and open questions. In Software Engineering, Artificial Intelligence, Networking, and Parallel/Distributed Computing 2006, pages 389-394, 2006.
[7] R. J. Douglas. Upper bounds on the length of circuits of even spread in the d-cube. Journal of Combinatorial Theory, 7:206-214, 1969.
[8] E. N. Gilbert. Gray codes and paths on the n-cube. Bell Sys. Tech. J., 37:817-826, 1958.
[9] B. Grünbaum, G. Shephard, and V. Klee. Convex Polytopes. SpringerVerlag, New York, New York, 2003.
[10] F. Harary, J. P. Hayes, and H. Wu. A survey of the theory of hypercube graphs. Computers and Mathematics with Applications, 15(4):277-289, 1988.
[11] S. Hood, D. Recoskie, J. Sawada, and D. Wong. Snakes, coils, and single-track circuit codes with spread k. Journal of Combinatorial Optimization, 30(1):42-62, 2013.
[12] W. H. Kautz. Unit-distance error-checking codes. IRE Trans. Electronic Computers, 7:179-180, 1958.
[13] D. Kinny. A new approach to the snake-in-the-box problem. In Proc. 20th European Conf. Artificial Intelligence (ECAI 2012), 2012.
[14] V. Klee. A method for constructing circuit codes. J. ACM, 14(3):520528, 1967.
[15] K. J. Kochut. Snake-in-the-box-code for dimension 7. Journal of Combinatorial Mathematics and Combinatorial Computing, 20:175185, 1996.
[16] S. J. Meyerson, W. E. Whiteside, T. E. Drapela, and W. D. Potter. Finding longest paths in hypercubes, snakes and coils. In Computational Intelligence for Engineering Solutions (CIES), 2014 IEEE Symposium on, pages 103-109, 2014.
[17] A. Palombo, R. Stern, R. Puzis, A. Felner, S. Kiesel, and W. Ruml. Solving the snake in the box problem with heuristic search: First results. In Symposium on Combinatorial Search (SOCS), pages 96-104, 2015.
[18] K. Paterson and J. Tuliani. Some new circuit codes. IEEE Transactions on Information Theory, 44(3):1305-1309, May 1998.
[19] W. D. Potter, R. W. Robinson, J. A. Miller, K. Kochut, and D. Z. Redys. Using the genetic algorithm to find snake-in-the-box codes. Industrial and Engineering Applications of Artificial Intelligence and Expert Systems, pages 421-426, 1996.
[20] R. C. Singleton. Generalized snake-in-the-box codes. IEEE Trans. Electronic Computers, 15:596-602, 1966.
[21] D. R. Tuohy, W. D. Potter, and D. A. Casella. Searching for snake-in-the-box codes with evolved pruning methods. In International Conference on Genetic and Evolutionary Methods, pages 3-9, 2007.
[22] E. Wynn. Constructing circuit codes by permuting initial sequences. arXiv:1201.1647, 2012.

A Transition Sequences for New Record Circuit Codes

The following codes are the transition sequences for the new record length circuit codes reported in Table 3. We follow the convention of [18], [11], and others in reporting transition sequences, which assigns the labels $0, \ldots, 9$ to dimensions 1 through 10 , and the characters a, \ldots, z to dimensions 11 through 36. To maintain consistency with the rest of this note (where many of our arguments rely on the even parity of the transition sequence) we report all N transitions in the code. As [11] observes, the final transition is not technically necessary to reconstruct the circuit code since it is a cycle defined to start to $\overrightarrow{0}$. When using these transition sequences, the reader should carefully distinguish between the number " 1 " and the letter "l", e.g. as in the transition sequences for the $(22,7,234),(23,7,266)$, and $(24,7,310)$ codes.
(22,7,234) 5b32f78hgc3bef4idc80195hd478e65j1ab2f6eh017gfb3i4c8g7abh0 984de5k19034a2h1e67fb2iade3cb7hg084c36j7d5409ah1e5dg06if ea2l3b7f69ahg873cd4i08g2391h0d56ea1j9cd2ba6hfg73b25i6c43g 89h0d4cfg5ked912a6he589f76i2bc3g7fh1280gc4j5d908bch1a95ef 6i2a14l
$(23,7,266) \quad 5 b 32 f 78 \mathrm{mhgc} 3 \mathrm{befm} 4 \mathrm{idc} 801 \mathrm{~m} 95 \mathrm{hd} 478 \mathrm{me} 65 \mathrm{j} 1 \mathrm{abm} 2 \mathrm{f} 6 \mathrm{eh} 01 \mathrm{~m} 7 \mathrm{gfb} 3$ i4mc8g7abhm0984de5mk19034am2h1e67fmb2iade3mcb7hg08m 4c36j7dm5409ah1me5dg06imfea2l3b7f69amhg873cdm4i08g23m 91h0d56mea1j9cdm2ba6hfgm73b25i6mc43g89hm0d4cfg5mked9 12am6he589fm76i2bc3mg7fh128m0gc4j5dm908bch1ma95ef6im 2a14l
$(24,7,310) \quad 5 b 3 m 2 f 7 n 8 h g m c 3 b n e f 4 m i d c n 801 \mathrm{~m} 95 h n d 47 \mathrm{~m} 8 \mathrm{e} 6 \mathrm{n} 5 \mathrm{j} 1 \mathrm{mab} 2 \mathrm{nf} 6 \mathrm{e}$ mh01n7gfmb3in4c8mg7anbh0m984nde5mk19n034ma2hn1e6m7 fbn2iamde3ncb7mhg0n84cm36jn7d5m409nah1me5dng06mifena 2l3b7mf69nahgm873ncd4mi08ng23m91hn0d5m6ean1j9mcd2nb a6mhfgn73bm25in6c4m3g8n9h0md4cnfg5mkedn912ma6hne58 m9f7n6i2mbc3ng7fmh12n80gmc4jn5d9m08bnch1ma95nef6mi2a n14l
$(26,7,466) \quad 5 m b n 3 o 2 p f m 7 n 8 o h p g m e n 3 o b p e m f n 4 o i p d m e n 8 o 0 p 1 m 9 n 5 o h p d m$ 4n7o8pem6n5ojp1manbo2pfm6neohp0m1n7ogpfmbn3oip4men8 ogp7manbohp0m9n8o4pdmen5okp1m9n0o3p4man2ohp1men6o 7pfmbn2oipamdneo3pcmbn7ohpgm0n8o4pcm3n6ojp7mdn5o4p 0m9naohp1men5odpgm0n6oipfmenao2pl3mbn7ofp6m9naohpg m8n7o3pcmdn4oip0m8ngo2p3m9n1ohp0mdn5o6peman1ojp9mc ndo2pbman6ohpfmgn7o3pbm2n5oip6mcn4o3pgm8n9ohp0mdn4 ocpfmgn5okpemdn9o1p2man6ohpem5n8o9pfm7n6oip2mbnco3p gm7nfohp1m2n8o0pgmen4ojp5mdn9o0p8mbncohp1man9o5pe mfn6oip2man1o4pl
$(28,7,618) \quad 5 m b q n 3 o r 2 p f q m 7 n r 8 o h q p g m r e n 3 q o b p r e m f q n 4 o r i p d q m e n r 8 o 0 q$ p1mr9n5qohprdm4qn7or8peqm6nr5ojqp1mranbqo2prfm6qneor hp0qm1nr7ogqpfmrbn3qoipr4mcqn8orgp7qmanrbohqp0mr9n8q o4prdmeqn5orkp1qm9nr0o3qp4mran2qohpr1meqn6or7pfqmbnr 2oiqpamrdneqo3prcmbqn7orhpgqm0nr8o4qpemr3n6qojpr7mdq n5or4p0qm9nraohqp1mren5qodprgm0qn6oripfqmenrao2pl3mb qn7orfp6qm9nraohqpgmr8n7qo3prcmdqn4orip0qm8nrgo2qp3m r9n1qohpr0mdqn5or6peqmanr1ojqp9mrcndqo2prbmaqn6orhpf qmgnr7o3qpbmr2n5qoipr6mcqn4or3pgqm8nr9ohqp0mrdn4qoc prfmgqn5orkpeqmdnr9o1qp2mran6qohprem5qn8or9pfqm7nr6oi qp2mrbncqo3prgm7qnforhp1qm2nr8o0qpgmrcn4qojpr5mdqn9o r0p8qmbnrcohqp1mran9qo5premfqn6orip2qmanr1o4pl
$(30,7,930) \quad 5 q m r b s n t 3 q o r 2 s p t f q m r 7 s n t 8 q o r h s p t g q m r c s n t 3 q o r b s p t e q m r f s n t$ 4qorisptdqmrcsnt8qor0spt1qmr9snt5qorhsptdqmr4snt7qor8spt eqmr6snt5qorjspt1qmrasntbqor2sptfqmr6snteqorhspt0qmr1snt 7 qorgsptfqmrbsnt3qorispt4qmrcsnt8qorgspt7qmrasntbqorhspt0 qmr9snt8qor4sptdqmresnt5qorkspt1qmr9snt0qor3spt4qmrasnt 2qorhspt1qmresnt6qor7sptfqmrbsnt2qorisptaqmrdsnteqor3sptc qmrbsnt7qorhsptgqmr0snt8qor4sptcqmr3snt6qorjspt7qmrdsnt5 qor4spt0qmr9sntaqorhspt1qmresnt5qordsptgqmr0snt6qorisptfq mresntaqor2sptl3qmrbsnt7qorfspt6qmr9sntaqorhsptgqmr8snt7 qor3sptcqmrdsnt4qorispt0qmr8sntgqor2spt3qmr9snt1qorhspt0 qmrdsnt5qor6spteqmrasnt1qorjspt9qmrcsntdqor2sptbqmrasnt6 qorhsptfqmrgsnt7qor3sptbqmr2snt5qorispt6qmrcsnt4qor3sptgq mr8snt9qorhspt0qmrdsnt4qorcsptfqmrgsnt5qorkspteqmrdsnt9q or1spt2qmrasnt6qorhspteqmr5snt8qor9sptfqmr7snt6qorispt2q mrbsntcqor3sptgqmr7sntfqorhspt1qmr2snt8qor0sptgqmrcsnt4q orjspt5qmrdsnt9qor0spt8qmrbsntcqorhspt1qmrasnt9qor5spteq mrfsnt6qorispt2qmrasnt1qor4sptl
$(18,8,68) \quad$ 2e571b9afc6825319g46cd5e17f402cb6h184d9c2ef1a5d8327geb1c 6824f70bd9ch
$(21,8,116) \quad 01234567 \mathrm{~h} 08192 \mathrm{a} 3 \mathrm{bi041c} 253 \mathrm{dh} 06172 \mathrm{e} 48 \mathrm{j} 031 \mathrm{f} 2594 \mathrm{~h} 06172 \mathrm{a} 3 \mathrm{bi} 05$ 1kg789dc0bh324ed109iab76de2ch0153be89ja0124cefhd3b072e9i 5dgk
$(22,8,132)$
5mbn3o2qpfm7n8oqhpgmen3qobpemfnq4oipdmcqn8o0p1mq9n 5ohpdqm4n7o8pqem6n5ojqp1manboq2pfm6neqohp0m1nq7ogpf mbqn3oip4mqcn8ogp7qmanbohpq0m9n8o4qpdmen5oqkp1m9n 0qo3p4manq2ohp1meqn6o7pfmqbn2oipaqmdneo3pqcmbn7ohq pgm0n8oq4pcm3n6qojp7mdnq5o4p0m9qnaohp1mqen5odpgqm 0n6oipqfmenao2qpl3mbn7ofqp6m9naoqhpgm8n7qo3pcmdnq4oi p0m8qngo2p3mq9n1ohp0qmdn5o6pqeman1ojqp9mendoq2pbm an6qohpfmgnq7o3pbm2qn5oip6mqcn4o3pgqm8n9ohpq0mdn4o cqpfmgn5oqkpemdn9qo1p2manq6ohpem5qn8o9pfmq7n6oip2q mbnco3pqgm7nfohqp1m2n8oq0pgmen4qojp5mdnq9o0p8mbqnc ohp1mqan9o5peqmfn6oipq2man1o4qpl

0123456hi708192ahj3b041c2hi53d0617hk2e48031hif259406hj17 2a3b0hi51lg789dc0hib324ed1hj09ab76dhie2c0153hkbe89a01hi2 4cefd3hjb072e95hidgl

01231456m7h08l192ma3bil041mc253ldh0m6172le48mj031lf25m 94h0l617m2a3bli05m1kg789ldc0mbh32l4edm109ilab7m6de2lch 0m153ble89mja01124cmefhdl3b0m72e9li5dmgk

0123m456nhi70m819n2ahjm3b0n41c2mhi5n3d06m17hnk2e4m8 03n1hifm259n406hmj17n2a3bm0hin51lg789mdc0nhib3m24end1 hjm09anb76dmhien2c01m53hnkbe8m9a0n1hi2m4cenfd3hmjb0 n72e9m5hindgl

0123nl45o6m7hn08lo192mna3boil04n1mco253lndh0om617n2leo 48mjn031olf25nm94oh016n17mo2a3bnli0o5m1kg789nldco0mbh n32lo4edmn109oilabn7m6ode2lnch0om153nbleo89mjna01ol24c nmefohdl3nb0mo72e9nli5odmgk

011m2n3o4p5l6m7nhop018m1n9o2pal3mbniop014m1nco2p5l3m dnhop016m1n7o2pel4m8njop013m1nfo2p519m4nhop016m1n7o2p al3mbniop051kgl7m8n9odpcl0mbnhop312m4neodp110m9niopal bm7n6odpel2mcnhop011m5n3obpel8m9njopal0m1n2o4pclemfn hopdl3mbn0o7p2lem9niop5dgk

0m1n2o3p4q5m6nhoipq7m0n8o1p9q2manhojpq3mbn0o4p1qcm 2nhoipq5m3ndo0p6q1m7nhokpq2men4o8p0q3m1nhoipqfm2n5o 9p4q0m6nhojpq1m7n2oap3qbm0nhoipq51lgm7n8o9pdqcm0nho ipqbm3n2o4peqdm1nhojpq0m9naobp7q6mdnhoipqem2nco0p1q 5m3nhokpqbmen8o9paq0m1nhoipq2m4ncoepfqdm3nhojpqbm0 n7o2peq9m5nhoipqdgl
$(28,8,308) \quad$ 0n1o2p3qlr4n5o6pmqr7nho0p8qlr1n9o2pmqran3obpiqlr0n4o1p mqren2o5p3qlrdnho0pmqr6n1o7p2qlren4o8pmqrjn0o3p1qlrfn2o 5pmqr9n4ohp0qlr6n1o7pmqr2nao3pbqlrin0o5pmqr1kgn7o8p9ql rdnco0pmqrbnho3p2qlr4neodpmqr1n0o9piqlranbo7pmqr6ndoe p2qlrcnho0pmqr1n5o3pbqlren8o9pmqrjnao0p1qlr2n4ocpmqrenf ohpdqlr3nbo0pmqr7n2oep9qlrin5odpmqrgk
$(29,8,348) \quad 0 o 1 p 2 q 3 r m s 4 o 5 p 6 q n r s h o i p 7 q 0 r m s 8 o 1 p 9 q n r s 2 o a p h q j r m s 3 o b p 0 q$ nrs4o1pcq2rmshoip5qnrs3odp0q6rms1o7phqnrsko2peq4rms8o0 p3qnrs1ohpiqfrms2o5p9qnrs4o0p6qhrmsjo1p7qnrs2oap3qbrms0 ohpiqnrs51lgo7p8q9rmsdocp0qnrshoipbq3rms2o4peqnrsdo1phq jrms0o9paqnrsbo7p6qdrmshoipeqnrs2ocp0q1rms5o3phqnrskob peq8rms9oap0qnrs1ohpiq2rms4ocpeqnrsfodp3qhrmsjobp0qnrs7 o2peq9rms5ohpiqnrsdgl

0n1os2p3tqlr4sn5ot6pmqsr7ntho0ps8qltr1n9so2ptmqrasn3otbpi qslr0tn4o1spmqtren2so5pt3qlrsdnhto0pmsqr6tn1o7sp2qtlrens4 o8tpmqrsjn0to3p1sqlrtfn2os5pmtqr9ns4ohtp0qlsr6nt1o7psmqrt 2naos3pbtqlrisn0ot5pmqsr1ktgn7os8p9tqlrdsncot0pmqsrbntho3 ps2qltr4nesodptmqr1sn0ot9piqslratnbo7spmqtr6ndsoept2qlrscn hto0pmsqr1tn5o3spbqtlrens8o9tpmqrsjnato0p1sqlrt2n4oscpmt qrensfohtpdqlsr3ntbo0psmqrt7n2osep9tqlrisn5otdpmqsrgkt

[^0]: *E-mail:dr.kevin.byrnes@gmail.com

