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Abstract: We obtain the shifting property and some other combinatorial
identities for the bivariate Fibonacci polynomials (which generalize the Fi-
bonacci, Pell, Jacobsthal, Chebyschev, Fermat, Morgav-Voyce polynomials
and the Horadam numbers). In particular, we specialize all these identities
to the Chebyshev polynomials of the second kind.
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1 Introduction

The bivariate Fibonacci polynomials Fn(x, y) are defined by the recurrence

Fn+2(x, y) = xFn+1(x, y) + yFn(x, y) (1)

with the initial values F0(x, y) = 1 and F1(x, y) = x . Several classical
numerical and polynomial sequences can be viewed as a specialization of
this sequence. For instance, we have:
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1. The Fibonacci polynomials Fn(x) = Fn(x, 1) defined by the recur-
rence Fn+2(x) = xFn+1(x)+Fn(x) with the initial values F0(x) = 1
and F1(x) = x . The Fibonacci numbers fn = Fn(1, 1) = Fn(1) , [10,
A000045].

2. The Pell polynomials Pn(x) = Fn(2x, 1) = Fn(2x) , [5], defined by
the recurrence Pn+2(x) = 2xPn+1(x) +Pn(x) with the initial values
P0(x) = 1 and P1(x) = 2x . The Pell numbers pn = Fn(2, 1) =
Pn(1) , [10, A000129].

3. The Jacobsthal polynomials Jn(x) = Fn(1, 2x) , [6], defined by the
recurrence Jn+2(x) = Jn+1(x) + 2xJn(x) with the initial values
J0(x) = J1(x) = 1 . The Jacobsthal numbers jn = Fn(1, 2) = Jn(1) =
(2n+1 + (−1)n)/3 , [10, A001045].

4. The Chebyshev polynomials of the second kind Un(x) = Fn(x,−1) ,
[1, 4, 9], defined by the recurrence Un+2(x) = 2xUn+1(x) − Un(x)
with the initial values U0(x) = 1 and U1(x) = 2x .

5. The Fermat polynomials ϕn(x) = Fn(x,−2) , [4], defined by the
recurrence ϕn+2(x) = xϕn+1(x) − 2ϕn(x) with the initial values
ϕ0(x) = 1 and ϕ1(x) = x . The Lehmer numbers Fn(1,−2) , [10,
A107920].

6. The Morgan-Voyce polynomials Bn(x) = Fn(x+ 2,−1) = Un(x/2 +
2) , [7, 11, 12], defined by the recurrence Bn+2(x) = (x+2)Bn+1(x)−
Bn(x) with the initial values B0(x) = 1 and B1(x) = x+ 2 .

7. The Horadam numbers Wn = Fn(p,−q) , [2, 3], defined by the recur-
rence Wn+2 = pWn+1 − qWn with the initial values W0 = 1 and
W1 = p .

The bivariate Fibonacci polynomials have generating series

∑

n≥0
Fn(x, y) tn =

1

1− xt− yt2 (2)

and can be expressed as

Fn(x, y) =

bn/2c∑

k=0

(
n− k
k

)
xn−2kyk

Fn(x, y) =
1

2n

bn/2c∑

k=0

(
n+ 1

2k + 1

)
(x2 + 4y)kxn−2k
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Fn(x, y) =

n∑

k=0

(
n+ k + 1

2k + 1

)
(x− 2

√−y)k(
√−y)n−k .

Moreover, we have the Binet formula

Fn(x, y) =
α(x, y)n+1 − β(x, y)n+1

√
x2 + 4y

(3)

where α(x, y) =
x+
√

x2+4y

2 and β(x, y) =
x−
√

x2+4y

2 are the solutions
of the equation t2 − xt − y = 0 . Using this formula, we can prove the
identities

F2n+2(x, y) = Fn+1(x, y)2 + yFn(x, y)2 (4)

xF2n+3(x, y) = Fn+2(x, y)2 − y2Fn(x, y)2 . (5)

Starting from recurrence (1), we obtain the shifting property for the bivari-
ate Fibonacci polynomials, extending the shifting property

n∑

k=0

(
n

k

)
fk+1 =

n∑

k=0

(
n+ 1

k + 1

)
fk (6)

for the ordinary Fibonacci numbers obtained in [8]. Moreover, using iden-
tities (4) and (5), we prove, in a similar way, two other binomial identities
resembling the shifting property. Clearly, all these identities can be spe-
cialized to the polynomials recalled at be beginning. In the final section,
as an example, we specialize them for the Chebyshev polynomials.

2 Shifting property and main identities

We start by generalizing identity (6) to the polynomials Fn(x, y) .

Theorem 1. For the bivariate Fibonacci polynomials, we have the shifting
property

n∑

k=0

(
n

k

)
xkyn−kFk+1(x, y) =

n∑

k=0

(
n+ 1

k + 1

)
xk+1yn−kFk(x, y) (7)
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Proof. From recurrence (1), we have

n−1∑

k=0

(
n

k + 1

)
xk+1

yk+1
Fk+2(x, y) =

=
n−1∑

k=0

(
n

k + 1

)
xk+2

yk+1
Fk+1(x, y) +

n−1∑

k=0

(
n

k + 1

)
xk+1

yk
Fk(x, y)

that is

n∑

k=1

(
n

k

)
xk

yk
Fk+1(x, y) =

=

n∑

k=1

(
n

k

)
xk+1

yk
Fk(x, y) +

n−1∑

k=0

(
n

k + 1

)
xk+1

yk
Fk(x, y)

that is

n∑

k=0

(
n

k

)
xk

yk
Fk+1(x, y)− F1(x, y) =

=

n∑

k=0

[(
n

k

)
+

(
n

k + 1

)]
xk+1

yk
Fk(x, y)− xF0(x, y) .

By the recurrence of the binomial coefficients and by the initial values
F0(x, y) = 1 and F1(x, y) = x , we obtain the identity

n∑

k=0

(
n

k

)
xk

yk
Fk+1(x, y) =

n∑

k=0

(
n+ 1

k + 1

)
xk+1

yk
Fk(x, y)

which is equivalent to identity (7).

Notice that identity (7) can be obtained also by employing the general
techniques related to Riordan matrices developed in [8]. However, the ele-
mentary approach used to prove Theorem 1 can also be used to obtain other
identities similar to (7), such as the ones stated in next two theorems.

Theorem 2. We have the identity

n∑

k=0

(
n

k

)
yn−kF2k(x, y) =

n∑

k=0

(
n+ 1

k + 1

)
yn−kFk(x, y)2 . (8)
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Proof. From identity (4), we have

n−1∑

k=0

(
n

k + 1

)
F2k+2(x, y)

yk+1
=

n−1∑

k=0

(
n

k + 1

)
Fk+1(x, y)2

yk+1
+

n−1∑

k=0

(
n

k + 1

)
Fk(x, y)2

yk

that is

n∑

k=1

(
n

k

)
F2k(x, y)

yk
=

n∑

k=1

(
n

k

)
Fk(x, y)2

yk
+

n−1∑

k=0

(
n

k + 1

)
Fk(x, y)2

yk
.

that is

n∑

k=0

(
n

k

)
F2k(x, y)

yk
−F0(x, y) =

n∑

k=1

[(
n

k

)
+

(
n

k + 1

)]
Fk(x, y)2

yk
−F0(x, y)2 .

By the recurrence of the binomial coefficients and by the initial value
F0(x, y) = 1 , we obtain the identity

n∑

k=0

(
n

k

)
F2k(x, y)

yk
=

n∑

k=1

(
n+ 1

k + 1

)
Fk(x, y)2

yk

which is equivalent to identity (8).

Theorem 3. We have the identity

x

n∑

k=0

(
n

k

)
(−1)ky2n−2kFk(x, y)2F2k+1(x, y) =

=

n∑

k=0

(
n+ 1

k + 1

)
(−1)ky2n−2kFk(x, y)2Fk+1(x, y)2 .

(9)

Proof. From identity (5), we have

xFk+1(x, y)2F2k+3(x, y) = Fk+1(x, y)2Fk+2(x, y)2−y2Fk(x, y)2Fk+1(x, y)2 .

Then, from this equation, we have

x

n−1∑

k=0

(
n

k + 1

)
Fk+1(x, y)2F2k+3(x, y)

y2k+2
=

=

n−1∑

k=0

(
n

k + 1

)
Fk+1(x, y)2Fk+2(x, y)2

y2k+2
+

−
n−1∑

k=0

(
n

k + 1

)
Fk(x, y)2Fk+1(x, y)2

y2k
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that is

x

n∑

k=1

(
n

k

)
Fk(x, y)2F2k+1(x, y)

y2k
=

=
n∑

k=1

(
n

k

)
Fk(x, y)2Fk+1(x, y)2

y2k
−

n−1∑

k=0

(
n

k + 1

)
Fk(x, y)2Fk+1(x, y)2

y2k

that is

x

n∑

k=0

(
n

k

)
Fk(x, y)2F2k+1(x, y)

y2k
− xF0(x, y)2F1(x, y) =

=

n∑

k=0

[(
n

k

)
+

(
n

k + 1

)]
Fk(x, y)2Fk+1(x, y)2

y2k
− F0(x, y)2F1(x, y)2 .

By the recurrence of the binomial coefficients and by the initial values
F0(x, y) = 1 and F1(x, y) = x , we obtain the identity

x

n∑

k=0

(
n

k

)
1

y2k
Fk(x, y)2F2k+1(x, y) =

n∑

k=0

(
n+ 1

k + 1

)
Fk(x, y)2Fk+1(x, y)2

y2k

which is equivalent to identity (9).

3 Some generalizations

The bivariate Lucas polynomials are defined by the Binet formula

Ln(x, y) = α(x, y)n + β(x, y)n . (10)

They have generating series

∑

n≥0
Ln(x, y) tn =

2− xt
1− xt− yt2

and they can be expressed in terms of the bivariate Fibonacci polynomials
as Ln(x, y) = Fn(x, y) + yFn−2(x, y) . In particular, we have the Lucas
numbers Ln = Ln(1, 1) , [10, A000032].

We have the following result.

47



Lemma 4. For every m ≥ 1 , we have the generating series

∑

n≥0
Fm(n+1)−1(x, y) tn =

Fm−1(x, y)

1− Lm(x, y)t+ (−y)mt2
. (11)

Proof. By Binet formula (3), we have

∑

n≥0
Fmn−1(x, y) tn =

∑

n≥0

α(x, y)mn − β(x, y)mn

√
x2 + 4y

tn

=
1√

x2 + 4y

(
1

1− α(x, y)mt
− 1

1− β(x, y)mt

)

=
1√

x2 + 4y

(α(x, y)m − β(x, y)m)t

1− (α(x, y)m + β(x, y)m)t+ (α(x, y)β(x, y))mt2
.

By Binet formulas (3) and (10), and by dividing by t , we get series (11).

Now, by Lemma 4, we can obtain next

Theorem 5. For m ≥ 1 , we have the identities

n∑

k=0

(
n

k

)
(−1)(m+1)(n−k)ym(n−k)Lm(x, y)kFm(k+2)−1(x, y) =

=

n∑

k=0

(
n+ 1

k + 1

)
(−1)(m+1)(n−k)ym(n−k)Lm(x, y)k+1Fm(k+1)−1(x, y)

Fm−1(x, y)

n∑

k=0

(
n

k

)
(−1)(m+1)(n−k)ym(n−k)Fm(2k+1)−1(x, y) =

=

n∑

k=0

(
n+ 1

k + 1

)
(−1)(m+1)(n−k)ym(n−k)Fm(k+1)−1(x, y)2

and

Am(x, y)

n∑

k=0

(
n

k

)
(−1)ky2m(n−k)Fm(k+1)−1(x, y)2F2m(k+1)−1(x, y) =

=

n∑

k=0

(
n+ 1

k + 1

)
(−1)ky2m(n−k)Fm(k+1)−1(x, y)2Fm(k+2)−1(x, y)2 .

where Am(x, y) = Fm−1(x, y)Lm(x, y) .
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Proof. By series (2) and (11), we have at once the identity

Fm(n+1)−1(x, y)

Fm−1(x, y)
= Fn(Lm(x, y),−(−y)m) .

So, by replacing x and y by Lm(x, y) and −(−y)m , respectively, in
identities (7), (8) and (9), we obtain the three claimed identities.

4 Chebyshev polynomials

In this final section, we specialize the identities obtained above to the
Chebyshev polynomials of the second kind Un(x) = Fn(2x,−1) . Iden-
tities (7), (8) and (9) become

n∑

k=0

(
n

k

)
(2x)k(−1)n−kUk+1(x) =

n∑

k=0

(
n+ 1

k + 1

)
(2x)k+1(−1)n−kUk(x)

2x

n∑

k=0

(
n

k

)
(−1)kUk(x)2U2k+1(x) =

n∑

k=0

(
n+ 1

k + 1

)
(−1)kUk(x)2Uk+1(x)2

2x

n∑

k=0

(
n

k

)
(−1)kUk(x)2U2k+1(x) =

n∑

k=0

(
n+ 1

k + 1

)
(−1)kUk(x, y)2Uk+1(x)2 .

Moreover, since Ln(2x,−1) = 2Tn(x) , the identities stated in Theorem 5
becomes

n∑

k=0

(
n

k

)
(−1)n−k2kTm(y)kUm(k+2)−1(x) =

=

n∑

k=0

(
n+ 1

k + 1

)
(−1)n−k2k+1Tm(x)k+1Um(k+1)−1(x)

Um−1(x)

n∑

k=0

(
n

k

)
(−1)n−kUm(2k+1)−1(x) =

=

n∑

k=0

(
n+ 1

k + 1

)
(−1)n−kUm(k+1)−1(x)2
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and

2Um−1(x)Tm(x)

n∑

k=0

(
n

k

)
(−1)kUm(k+1)−1(x)2U2m(k+1)−1(x) =

=
n∑

k=0

(
n+ 1

k + 1

)
(−1)kUm(k+1)−1(x)2Um(k+2)−1(x)2 .
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