BULLETIN of the Motober 2018 INSTITUTE of COMBINATORICS and its APPLICATIONS

Editors-in-Chief: Marco Buratti, Donald Kreher, Tran van Trung

ISSN 1182 - 1278

A simple construction of 3-GDDs with block size 4 using SQS(v)

DINESH G. SARVATE* AND WILLIAM COWDEN*

College of Charleston, Charleston, SC, USA SarvateD@cofc.edu, cowdenwk@g.cofc.edu

Abstract: Recently, a 3-GDD $(n, 2, k, \lambda_1, \lambda_2)$ was defined by extending the definitions of a group divisible design and a *t*-design. It was shown that the necessary conditions are sufficient for the existence of a 3-GDD $(n, 2, 4, \lambda_1, \lambda_2)$ except possibly when $n \equiv 1, 3 \pmod{6}$, $n \neq 3, 7, 13$ and $\lambda_1 > \lambda_2$. In this short note we prove that the necessary conditions are sufficient for the existence of a 3-GDD $(n, 2, 4, \lambda_1, \lambda_2)$ for $n \equiv 1, 7, 9$ (mod 12). The proof relies on a basic construction of a 3-GDD(n, 2, 4, 3, 1). We also prove that for $n \equiv 3 \pmod{12}$, necessary conditions are sufficient except when $\lambda_1 \equiv 9 \pmod{12}$ and hence an open problem is to find a construction of a 3-GDD(n, 2, 4, 9, 1) for $n \equiv 3 \pmod{12}$, $n \neq 3$.

1 Introduction

Definition 1.1. A t- (v, k, λ) design, or a t-design, is a pair (X, B) where X is a v-set of points and B is a collection of k-subsets (blocks) of X with the property that every t-subset of X is contained in exactly λ blocks. The parameter λ is called the index of the design.

^{*}The authors thank the School of Science and Mathematics at the College of Charleston for a summer grant which made this collaboration possible.

Key words and phrases: Group divisible designs, 3-GDD, Large set, t-designs, SQS, STS.

AMS (MOS) Subject Classifications: 05B05, 05B07

Definition 1.2. A Steiner Quadruple System (SQS) is an ordered pair (V, B) where V is a finite set of v symbols and B is a collection of 4-subsets of V called blocks (quadruples) with the property that every 3-subset of V is a subset of exactly one quadruple B.

A SQS is also denoted by 3-(n, 4, 1) and it is known that the necessary conditions are sufficient for the existence of a $3-(n, 4, \lambda)$ [1].

Definition 1.3. [2] A 3-GDD $(n, 2, k, \lambda_1, \lambda_2)$ is a set X of 2n elements partitioned into two parts of size n called groups together with a collection of k-subsets of X called blocks, such that

(i) every 3-subset of each group occurs in λ_1 blocks and

(ii) every 3-subset where two elements are from one group and one element from the other group occurs in λ_2 blocks.

Lemma 1.4. If a 3- $(2n, 4, \lambda_2)$, (i.e., a 3- $GDD(n, 2, 4, \lambda_2, \lambda_2)$) and a 3- $(n, 4, \lambda_1 - \lambda_2)$ exists, then a 3- $GDD(n, 2, 4, \lambda_1, \lambda_2)$ exists.

Following necessary conditions (Table 1, where the values of λ_1 and λ_2 are given modulo 6) and the existence results of a 3-GDD $(n, 2, 4, \lambda_1, \lambda_2)$ are given in [2].

λ_1/λ_2	0	1	2	3	4	5
0	all n	n even	all n	n even	all n	n even
1	2,4	1, 2, 4, 5	2, 4	1, 2, 4, 5	2, 4	1, 2, 4, 5
	$\pmod{6}$	$\pmod{6}$	$\pmod{6}$	$\pmod{6}$	$\pmod{6}$	$\pmod{6}$
2	1, 2, 4, 5	2,4	1, 2, 4, 5	2,4	1, 2, 4, 5	2,4
	$\pmod{6}$	$\pmod{6}$	$\pmod{6}$	$\pmod{6}$	$\pmod{6}$	$\pmod{6}$
3	n even	all n	n even	all n	n even	all n
4	1, 2, 4, 5	2, 4	1, 2, 4, 5	2, 4	1, 2, 4, 5	2, 4
	$\pmod{6}$	$\pmod{6}$	$\pmod{6}$	$\pmod{6}$	$\pmod{6}$	$\pmod{6}$
5	2,4	1, 2, 4, 5	2, 4	1, 2, 4, 5	2, 4	1, 2, 4, 5
	$\pmod{6}$	$\pmod{6}$	$\pmod{6}$	(mod 6)	(mod 6)	(mod 6)

Table 1

Lemma 1.5. A necessary condition for the existence of a 3-GDD $(n, 2, k, \lambda_1, \lambda_2)$ for odd n and k even is that λ_1 and λ_2 must be of the same parity.

Theorem 1.6. A 3-GDD(n, 2, 4, 0, 1) exists for even n and a 3-GDD(n, 2, 4, 0, 2) exists for all positive integers n.

Lemma 1.7. Given $n \equiv 1, 2, 4, 5 \pmod{6}$, a 3-GDD $(n, 2, 4, \lambda'_1, \lambda'_2)$ exists for all even λ'_1 and λ'_2 if and only if a 3-GDD $(n, 2, 4, \lambda_1, \lambda_2)$ exists for all odd λ_1 and λ_2 .

Theorem 1.8. Necessary conditions are sufficient for the existence of a 3-GDD $(n, 2, 4, \lambda_1, \lambda_2)$ for $n \equiv 0, 2, 4, 5 \pmod{6}$ and n = 7.

Theorem 1.9. For $n \equiv 1, 3 \pmod{6}$, the necessary conditions as described in Table 1 are sufficient for the existence of a 3-GDD $(n, 2, 4, \lambda_1, \lambda_2)$ when $\lambda_1 \leq \lambda_2$.

In view of the above results, to prove that the necessary conditions are sufficient for the existence of 3-GDD $(n, 2, 4, \lambda_1, \lambda_2)$, we need the construction of 3-GDD $(n, 2, 4, \lambda_1, \lambda_2)$ for $n \equiv 1, 3 \pmod{6}$ and $n \geq 9$ where $\lambda_1 > \lambda_2$.

2 Application of large sets and SQS(v)

2.1 A Construction of 3-GDD $(n, 2, 4, \lambda_1 = 3, \lambda_2 = 1)$ for $n \equiv 1, 3 \pmod{6}$

Let us denote the groups for the required 3-GDD by $G_1 = \{a_1, a_2, \dots, a_n\}$ and $G_2 = \{b_1, b_2, \dots, b_n\}$. It is known that there exists a large set of STS(n)'s for $n \equiv 1, 3 \pmod{6}$ and $n \neq 7$.

Hence, a large set, a partition of all 3-subsets of G_i into n-2 Steiner triple systems (STSs) on G_i exists, say $S_{i,1}, \dots S_{i,n-2}$ for i = 1, 2. It is also well known that a SQS(n+1) exists, as $n+1 \equiv 2, 4 \pmod{6}$.

We claim that the blocks of a SQS(n+1) on $G_1 \bigcup \{b_{n-1}\}$, a SQS(n+1) on $G_1 \bigcup \{b_n\}$, a SQS(n+1) on $G_2 \bigcup \{a_{n-1}\}$, a SQS(n+1) on $G_2 \bigcup \{a_n\}$, and the blocks obtained by taking union of the triples of $S_{1,j}$ with $\{b_j\}$ and by taking union of the triples of $S_{2,j}$ with $\{a_j\}$, for $j = 1, 2, \dots n-2$, taken together give the blocks for a 3-GDD(n, 2, 4, 3, 1).

We check the claim by counting the values of λ_1 and λ_2 . Observe that in an STS on a group, say G_1 , every pair (a_i, a_j) of distinct elements of the group comes only once. Hence, if we union its triples with an element, say b_t of the other group, triple $\{a_i, a_j, b_t\}$ occurs in exactly one block for $t = 1, 2, \dots, n-2$. The triples $\{a_i, a_j, b_t\}$ for t = n - 1, n occur singly in the blocks of SQS(n + 1) on $G_1 \cup \{b_{n-1}\}$ and SQS(n + 1) on $G_1 \cup \{b_n\}$ respectively. Similarly, reversing the roles of G_1 and G_2 , we see that λ_2 is as required. Observe that a large set for each group contributes 1 towards λ_1 for the triples from the group and SQS(n+1)'s contribute the remaining 2 towards the λ_1 count.

Now recall that for $n \equiv 1, 3 \pmod{6}$, a 3-GDD(n, 2, 4, 0, 2) exists. Also for $n \equiv 1 \pmod{6}$, a 3-(2n, 4, 1) exists. Hence from Lemma 1.7, Lemma 1.5, Theorem 1.9 and Theorem 1.6 we have

Theorem 2.1. Necessary conditions are sufficient for the existence of a 3-GDD $(n, 2, 4, \lambda_1, \lambda_2)$ for $n \equiv 1 \pmod{6}$.

Proof. According to Lemmas 1.5 and 1.7 and Theorem 1.9, we only need to consider the case where both λ_1 and λ_2 are odd and $\lambda_1 > \lambda_2$.

For $n \equiv 1 \pmod{6}$, a 3-(n, 4, 4), a 3-GDD(n, 2, 4, 3, 1), and a 3-GDD(n, 2, 4, 0, 2) exist. Hence to construct a 3-GDD(n, 2, 4, 2t + 1, 2s + 1) where t > s, we use 2s + 1 copies of a 3-(2n, 4, 1) and $\frac{2t-2s}{4}$ copies of a 3-(n, 4, 4) on each group, if $(2t - 2s) \equiv 0 \pmod{4}$. If $(2t - 2s) \equiv 2 \pmod{4}$, then we use one copy of a 3-GDD(n, 2, 4, 3, 1), 2s copies of a 3-(2n, 4, 1), and $\frac{2t-2s-2}{4}$ copies of a 3-(n, 4, 4) on each group.

Similarly, as for $n \equiv 3 \pmod{6}$, a 3-(2n, 4, 3) exists, we have the following result.

Theorem 2.2. A 3-GDD $(n, 2, 4, \lambda_1 = 3t + 3s, \lambda_2 = t + 3s + 2m)$ exists for $n \equiv 3 \pmod{6}$ and integers $t, s, m \geq 0$.

Unlike $n \equiv 1 \pmod{6}$, for $n \equiv 3 \pmod{6}$, one needs to prove the existence for even λ_1 and λ_2 as well as for odd λ_1 and λ_2 as Theorem 1.7 is not applicable for $n \equiv 3 \pmod{6}$. Also, recall that for $n \equiv 3 \pmod{6}$, $\lambda_1 \equiv 0 \pmod{6}$ (even) or $\lambda_1 \equiv 3 \pmod{6}$ (odd). From Hanani [1], for $n \equiv 9 \pmod{12}$, a 3-(n, 4, 6) exists, but for $n \equiv 3 \pmod{12}$, smallest λ for which a 3- $(n, 4, \lambda)$ exists is 12. Hence we have,

Theorem 2.3. Necessary conditions are sufficient for the existence of a 3- $GDD(n, 2, 4, \lambda_1, \lambda_2)$ for $n \equiv 3 \pmod{6}$ except when $\lambda_1 \equiv 9 \pmod{12}$ and $n \equiv 3 \pmod{12}$.

Proof. Let λ_1 be even. Hence, as $n \equiv 3 \pmod{6}$, $\lambda_1 = 6t$ for some nonnegative integer t. Two copies of a 3-GDD(n, 2, 4, 3, 1) give a 3-GDD(n, 2, 4, 6, 2). Also a 3-GDD(n, 2, 4, 12, 2) can be obtained by a 3-(n, 4, 12) and a 3-GDD(n, 2, 4, 0, 2). Hence for any nonnegative integers t and s, when the necessary conditions are satisfied, a 3-GDD(n, 2, 4, 6t, 2s) exists. (For $n \equiv 3 \pmod{12}$, a 3-GDD(n, 2, 4, 6, 0) does not exists as necessary conditions are not satisfied.)

Let λ_1 be odd, hence $\lambda_1 = 6t + 3$ for some nonnegative integer t. For $n \equiv 9$ (mod 12), t copies of a 3-(n, 4, 6) on each group, a 3-GDD(n, 2, 4, 3, 1) and s copies of a 3-GDD(n, 2, 4, 0, 2) provide us with a 3-GDD $(n, 2, 4, \lambda_1 = 6t + 3, \lambda_2 = 2s + 1)$ for any nonnegative integers t and s. Similarly, for $n \equiv 3$ (mod 12), we can construct a 3-GDD $(n, 2, 4, \lambda_1 = 12t + 3, \lambda_2 = 2s + 1)$ as a 3-(n, 4, 12) on each group exists.

References

- H. Hanani, On some tactical configurations, Canad. J. Math., 15(4) (1963) 702–722.
- [2] D.G. Sarvate and William Bezire, 3-GDDs with block size 4, Bull. Inst. Combin. Appl., 82 (2018) 50–65.