BULEAN of the
 Volume 84 Octoler 2018

 ISSIINT: of

 ISSIINT: of
 GOMBNMIORGE and its APPIBITOLS

Editors-in-Chief: Marco Buratti, Donald Kreher, Tran van Trung

A simple construction of 3-GDDs with block size 4 using $\operatorname{SQS}(v)$

Dinesh G. Sarvate* and William Cowden*
College of Charleston, Charleston, SC, USA
SarvateD@cofc.edu, cowdenwk@g.cofc.edu

Abstract

Recently, a $3-\operatorname{GDD}\left(n, 2, k, \lambda_{1}, \lambda_{2}\right)$ was defined by extending the definitions of a group divisible design and a t-design. It was shown that the necessary conditions are sufficient for the existence of a $3-\mathrm{GDD}\left(n, 2,4, \lambda_{1}, \lambda_{2}\right)$ except possibly when $n \equiv 1,3(\bmod 6), n \neq 3,7,13$ and $\lambda_{1}>\lambda_{2}$. In this short note we prove that the necessary conditions are sufficient for the existence of a $3-\operatorname{GDD}\left(n, 2,4, \lambda_{1}, \lambda_{2}\right)$ for $n \equiv 1,7,9$ (mod 12). The proof relies on a basic construction of a $3-\operatorname{GDD}(n, 2,4,3,1)$. We also prove that for $n \equiv 3(\bmod 12)$, necessary conditions are sufficient except when $\lambda_{1} \equiv 9(\bmod 12)$ and hence an open problem is to find a construction of a $3-\operatorname{GDD}(n, 2,4,9,1)$ for $n \equiv 3(\bmod 12), n \neq 3$.

1 Introduction

Definition 1.1. A $t-(v, k, \lambda)$ design, or a t-design, is a pair (X, B) where X is a v-set of points and B is a collection of k-subsets (blocks) of X with the property that every t-subset of X is contained in exactly λ blocks. The parameter λ is called the index of the design.

[^0]Definition 1.2. A Steiner Quadruple System (SQS) is an ordered pair (V, B) where V is a finite set of v symbols and B is a collection of 4-subsets of V called blocks (quadruples) with the property that every 3-subset of V is a subset of exactly one quadruple B.

A SQS is also denoted by $3-(n, 4,1)$ and it is known that the necessary conditions are sufficient for the existence of a $3-(n, 4, \lambda)[1]$.

Definition 1.3. [2] $A 3-G D D\left(n, 2, k, \lambda_{1}, \lambda_{2}\right)$ is a set X of $2 n$ elements partitioned into two parts of size n called groups together with a collection of k-subsets of X called blocks, such that
(i) every 3 -subset of each group occurs in λ_{1} blocks and
(ii) every 3 -subset where two elements are from one group and one element from the other group occurs in λ_{2} blocks.

Lemma 1.4. If a $3-\left(2 n, 4, \lambda_{2}\right)$, (i.e., a $3-G D D\left(n, 2,4, \lambda_{2}, \lambda_{2}\right)$) and a 3$\left(n, 4, \lambda_{1}-\lambda_{2}\right)$ exists, then a $3-G D D\left(n, 2,4, \lambda_{1}, \lambda_{2}\right)$ exists.

Following necessary conditions (Table 1 , where the values of λ_{1} and λ_{2} are given modulo 6) and the existence results of a $3-\operatorname{GDD}\left(n, 2,4, \lambda_{1}, \lambda_{2}\right)$ are given in [2].

$\lambda_{1} / \lambda_{2}$	0	1	2	3	4	5
0	all n	n even	all n	n even	all n	n even
1	2,4 $(\bmod 6)$	$1,2,4,5$ $(\bmod 6)$	2,4 $(\bmod 6)$	$1,2,4,5$ $(\bmod 6)$	2,4 $(\bmod 6)$	$1,2,4,5$ $(\bmod 6)$
2	$1,2,4,5$ $(\bmod 6)$	2,4 $(\bmod 6)$	$1,2,4,5$ $(\bmod 6)$	2,4 $(\bmod 6)$	$1,2,4,5$ $(\bmod 6)$	2,4 $(\bmod 6)$
3	n even	all n	n even	all n	n even	all n
4	$1,2,4,5$ $(\bmod 6)$	2,4 $(\bmod 6)$	$1,2,4,5$ $(\bmod 6)$	2,4 $(\bmod 6)$	$1,2,4,5$ $(\bmod 6)$	2,4 $(\bmod 6)$
5	2,4 $(\bmod 6)$	$1,2,4,5$ $(\bmod 6)$	2,4 $(\bmod 6)$	$1,2,4,5$ $(\bmod 6)$	2,4 $(\bmod 6)$	$1,2,4,5$ $(\bmod 6)$

Table 1
Lemma 1.5. A necessary condition for the existence of a $3-G D D(n, 2, k$, λ_{1}, λ_{2}) for odd n and k even is that λ_{1} and λ_{2} must be of the same parity.

Theorem 1.6. $A 3-G D D(n, 2,4,0,1)$ exists for even n and a $3-G D D(n, 2,4,0,2)$ exists for all positive integers n.

Lemma 1.7. Given $n \equiv 1,2,4,5(\bmod 6)$, a $3-G D D\left(n, 2,4, \lambda_{1}^{\prime}, \lambda_{2}^{\prime}\right)$ exists for all even λ_{1}^{\prime} and λ_{2}^{\prime} if and only if a $3-G D D\left(n, 2,4, \lambda_{1}, \lambda_{2}\right)$ exists for all odd λ_{1} and λ_{2}.

Theorem 1.8. Necessary conditions are sufficient for the existence of a $3-G D D\left(n, 2,4, \lambda_{1}, \lambda_{2}\right)$ for $n \equiv 0,2,4,5(\bmod 6)$ and $n=7$.

Theorem 1.9. For $n \equiv 1,3(\bmod 6)$, the necessary conditions as described in Table 1 are sufficient for the existence of a $3-G D D\left(n, 2,4, \lambda_{1}, \lambda_{2}\right)$ when $\lambda_{1} \leq \lambda_{2}$.

In view of the above results, to prove that the necessary conditions are sufficient for the existence of $3-\operatorname{GDD}\left(n, 2,4, \lambda_{1}, \lambda_{2}\right)$, we need the construction of $3-\operatorname{GDD}\left(n, 2,4, \lambda_{1}, \lambda_{2}\right)$ for $n \equiv 1,3(\bmod 6)$ and $n \geq 9$ where $\lambda_{1}>\lambda_{2}$.

2 Application of large sets and SQS (v)

2.1 A Construction of $3-\operatorname{GDD}\left(n, 2,4, \lambda_{1}=3, \lambda_{2}=1\right)$ for $n \equiv 1,3(\bmod 6)$

Let us denote the groups for the required 3-GDD by $G_{1}=\left\{a_{1}, a_{2}, \cdots, a_{n}\right\}$ and $G_{2}=\left\{b_{1}, b_{2}, \cdots, b_{n}\right\}$. It is known that there exists a large set of $\operatorname{STS}(n)$'s for $n \equiv 1,3(\bmod 6)$ and $n \neq 7$.
Hence, a large set, a partition of all 3-subsets of G_{i} into $n-2$ Steiner triple systems (STSs) on G_{i} exists, say $S_{i, 1}, \cdots S_{i, n-2}$ for $i=1,2$. It is also well known that a $\operatorname{SQS}(n+1)$ exists, as $n+1 \equiv 2,4(\bmod 6)$.

We claim that the blocks of a $\operatorname{SQS}(n+1)$ on $G_{1} \bigcup\left\{b_{n-1}\right\}$, a $\operatorname{SQS}(n+1)$ on $G_{1} \bigcup\left\{b_{n}\right\}$, a $\operatorname{SQS}(n+1)$ on $G_{2} \bigcup\left\{a_{n-1}\right\}$, a $\operatorname{SQS}(n+1)$ on $G_{2} \bigcup\left\{a_{n}\right\}$, and the blocks obtained by taking union of the triples of $S_{1, j}$ with $\left\{b_{j}\right\}$ and by taking union of the triples of $S_{2, j}$ with $\left\{a_{j}\right\}$, for $j=1,2, \cdots n-2$, taken together give the blocks for a $3-\operatorname{GDD}(n, 2,4,3,1)$.
We check the claim by counting the values of λ_{1} and λ_{2}. Observe that in an STS on a group, say G_{1}, every pair $\left(a_{i}, a_{j}\right)$ of distinct elements of the group comes only once. Hence, if we union its triples with an element, say b_{t} of the other group, triple $\left\{a_{i}, a_{j}, b_{t}\right\}$ occurs in exactly one block for $t=1,2, \cdots, n-2$. The triples $\left\{a_{i}, a_{j}, b_{t}\right\}$ for $t=n-1, n$ occur singly in the blocks of $\operatorname{SQS}(n+1)$ on $G_{1} \bigcup\left\{b_{n-1}\right\}$ and $\operatorname{SQS}(n+1)$ on $G_{1} \bigcup\left\{b_{n}\right\}$ respectively. Similarly, reversing the roles of G_{1} and G_{2}, we see that λ_{2} is
as required. Observe that a large set for each group contributes 1 towards λ_{1} for the triples from the group and $\operatorname{SQS}(n+1)$'s contribute the remaining 2 towards the λ_{1} count.

Now recall that for $n \equiv 1,3(\bmod 6)$, a $3-\operatorname{GDD}(n, 2,4,0,2)$ exists. Also for $n \equiv 1(\bmod 6)$, a $3-(2 n, 4,1)$ exists. Hence from Lemma 1.7, Lemma 1.5, Theorem 1.9 and Theorem 1.6 we have

Theorem 2.1. Necessary conditions are sufficient for the existence of a $3-G D D\left(n, 2,4, \lambda_{1}, \lambda_{2}\right)$ for $n \equiv 1(\bmod 6)$.

Proof. According to Lemmas 1.5 and 1.7 and Theorem 1.9, we only need to consider the case where both λ_{1} and λ_{2} are odd and $\lambda_{1}>\lambda_{2}$.

For $n \equiv 1(\bmod 6)$, a $3-(n, 4,4)$, a $3-\operatorname{GDD}(n, 2,4,3,1)$, and a $3-\operatorname{GDD}(n, 2,4$, $0,2)$ exist. Hence to construct a $3-\operatorname{GDD}(n, 2,4,2 t+1,2 s+1)$ where $t>s$, we use $2 s+1$ copies of a $3-(2 n, 4,1)$ and $\frac{2 t-2 s}{4}$ copies of a $3-(n, 4,4)$ on each group, if $(2 t-2 s) \equiv 0(\bmod 4)$. If $(2 t-2 s) \equiv 2(\bmod 4)$, then we use one copy of a $3-\operatorname{GDD}(n, 2,4,3,1), 2 s$ copies of a $3-(2 n, 4,1)$, and $\frac{2 t-2 s-2}{4}$ copies of a $3-(n, 4,4)$ on each group.

Similarly, as for $n \equiv 3(\bmod 6)$, a $3-(2 n, 4,3)$ exists, we have the following result.

Theorem 2.2. A 3-GDD $\left(n, 2,4, \lambda_{1}=3 t+3 s, \lambda_{2}=t+3 s+2 m\right)$ exists for $n \equiv 3(\bmod 6)$ and integers $t, s, m \geq 0$.

Unlike $n \equiv 1(\bmod 6)$, for $n \equiv 3(\bmod 6)$, one needs to prove the existence for even λ_{1} and λ_{2} as well as for odd λ_{1} and λ_{2} as Theorem 1.7 is not applicable for $n \equiv 3(\bmod 6)$. Also, recall that for $n \equiv 3(\bmod 6), \lambda_{1} \equiv 0$ $(\bmod 6)($ even $)$ or $\lambda_{1} \equiv 3(\bmod 6)(\operatorname{odd})$. From Hanani $[1]$, for $n \equiv 9$ $(\bmod 12)$, a $3-(n, 4,6)$ exists, but for $n \equiv 3(\bmod 12)$, smallest λ for which a $3-(n, 4, \lambda)$ exists is 12 . Hence we have,

Theorem 2.3. Necessary conditions are sufficient for the existence of a 3$\operatorname{GDD}\left(n, 2,4, \lambda_{1}, \lambda_{2}\right)$ for $n \equiv 3(\bmod 6)$ except when $\lambda_{1} \equiv 9(\bmod 12)$ and $n \equiv 3(\bmod 12)$.

Proof. Let λ_{1} be even. Hence, as $n \equiv 3(\bmod 6), \lambda_{1}=6 t$ for some nonnegative integer t. Two copies of a $3-\operatorname{GDD}(n, 2,4,3,1)$ give a $3-\operatorname{GDD}(n, 2,4,6,2)$. Also a $3-\operatorname{GDD}(n, 2,4,12,2)$ can be obtained by a $3-(n, 4,12)$ and a 3 $\operatorname{GDD}(n, 2,4,0,2)$. Hence for any nonnegative integers t and s, when the
necessary conditions are satisfied, a $3-\operatorname{GDD}(n, 2,4,6 t, 2 s)$ exists. (For $n \equiv 3$ $(\bmod 12)$, a $3-\operatorname{GDD}(n, 2,4,6,0)$ does not exists as necessary conditions are not satisfied.)

Let λ_{1} be odd, hence $\lambda_{1}=6 t+3$ for some nonnegative integer t. For $n \equiv 9$ $(\bmod 12), t$ copies of a $3-(n, 4,6)$ on each group, a $3-\operatorname{GDD}(n, 2,4,3,1)$ and s copies of a $3-\operatorname{GDD}(n, 2,4,0,2)$ provide us with a $3-\operatorname{GDD}\left(n, 2,4, \lambda_{1}=\right.$ $6 t+3, \lambda_{2}=2 s+1$) for any nonnegative integers t and s. Similarly, for $n \equiv 3$ $(\bmod 12)$, we can construct a $3-\operatorname{GDD}\left(n, 2,4, \lambda_{1}=12 t+3, \lambda_{2}=2 s+1\right)$ as a $3-(n, 4,12)$ on each group exists.

References

[1] H. Hanani, On some tactical configurations, Canad. J. Math., 15(4) (1963) 702-722.
[2] D.G. Sarvate and William Bezire, 3-GDDs with block size 4, Bull. Inst. Combin. Appl., 82 (2018) 50-65.

[^0]: *The authors thank the School of Science and Mathematics at the College of Charleston for a summer grant which made this collaboration possible.

 Key words and phrases: Group divisible designs, 3-GDD, Large set, t-designs, SQS, STS.

 AMS (MOS) Subject Classifications: 05B05, 05B07

