BULETIN of The

Volume 87
Octoher 2019

NSTIINT: 0f

GOMBNMTORGS and its APPIBIHOXS

Editors-in-Chief: Marco Buratti, Donald Kreher, Tran van Trung

Decomposition of product graphs into paths and stars with three edges

A. Pauline Ezhilarasi and A. Muthusamy*
Periyar University, Salems Tamil Nadu, India
post2pauline@gmail.com AND ambdu@yahoo.com

Abstract

Let P_{k} and S_{k} respectively denote a path and a star on k vertices. Decomposition of G into p copies of H_{1} and q copies of H_{2} is denoted as $\left\{p H_{1}, q H_{2}\right\}$-decomposition. In this paper, we give necessary and sufficient conditions for the existence of a $\left\{p P_{4}, q S_{4}\right\}$-decomposition of product graphs namely cartesian product, tensor product and wreath product of graphs, where p and q are nonnegative integers.

1 Introduction

Unless stated otherwise all graphs considered here are finite, simple, and undirected. For the standard graph-theoretic terminology the readers are referred to Bondy and Murty [5]. Let P_{k}, S_{k}, K_{k} respectively denote a path, star and complete graph on k vertices, and let $K_{m, n}$ denote the complete bipartite graph with m and n vertices in the parts. We denote a star S_{k} with center x_{0} and end vertices x_{1}, \cdots, x_{k-1} by ($x_{0} ; x_{1}, \cdots, x_{k-1}$). A graph whose vertex set is partitioned into subsets V_{1}, \ldots, V_{m} with edge set $\left\{x y: x \in V_{i}, y \in V_{j}, 1 \leq i \neq j \leq m\right\}$ is a complete m-partite graph, denoted by $K_{n_{1}, \ldots, n_{m}}$, when $\left|V_{i}\right|=n_{i}$ for all i. For $G=K_{2 n}$ or $K_{n, n}$, the graph $G-I$ denotes G with a 1 -factor I removed. For any integer $\lambda>0, \lambda G$ denotes the graph consisting of λ edge-disjoint copies of G. The complement of the graph G is denoted by \bar{G}. For an arbitrary graph G, a list of edge-disjoint subgraphs H_{1}, \cdots, H_{k} such that $E(G)=E\left(H_{1}\right) \cup \cdots \cup E\left(H_{k}\right)$ is called a decomposition of G and we write G as $G=H_{1} \oplus \cdots \oplus H_{k}$. For $1 \leq i \leq k$, if $H_{i} \cong H$, we say that G has a H-decomposition. For two graphs G and H we define their cartesian product $G \square H$, tensor product $G \times H$ and lexicographic or wreath product $G \otimes H$ with vertex set $V(G) \times V(H)=\{(g, h): g \in V(G)$ and $h \in V(H)\}$ and their

[^0]edge set as given below.
$E(G \square H)=\left\{(g, h)\left(g^{\prime}, h^{\prime}\right): g=g^{\prime}, h h^{\prime} \in E(H)\right.$, or $\left.g g^{\prime} \in E(G), h=h^{\prime}\right\}$,
$E(G \times H)=\left\{(g, h)\left(g^{\prime}, h^{\prime}\right): g g^{\prime} \in E(G)\right.$ and $\left.h h^{\prime} \in E(H)\right\}$,
$E(G \otimes H)=\left\{(g, h)\left(g, h^{\prime}\right): g g^{\prime} \in E(G)\right.$ or $\left.g=g^{\prime}, h h^{\prime} \in E(H)\right\}$.
It is well known that the Cartesian product is commutative and associative and the tensor product is commutative and distributive over edge-disjoint union of graphs, i.e., if $G=G_{1} \oplus \cdots \oplus G_{k}$, then $G \times H=\left(G_{1} \times H\right) \oplus$ $\cdots \oplus\left(G_{k} \times H\right)$. It is easy to observe that $K_{m} \otimes \overline{K_{n}} \cong K_{n, \cdots, n(m \text { times })}$ and $K_{m} \otimes \overline{K_{n}}=\left(K_{m} \times K_{n}\right) \oplus n K_{m}$. If G has a decomposition into p copies of H_{1} and q copies of H_{2}, then we say that G has a $\left\{p H_{1}, q H_{2}\right\}$-decomposition.

Study of $\left\{p H_{1}, q H_{2}\right\}$-decomposition of graphs is not new. Abueida et al. $[1,3]$ completely determined the values of n for which $K_{n}(\lambda)$ admits a $\left\{p H_{1}, q H_{2}\right\}$-decomposition such that $H_{1} \cup H_{2} \cong K_{t}$, when $\lambda \geq 1$ and $\left|V\left(H_{1}\right)\right|=\left|V\left(H_{2}\right)\right|=t$, where $t \in\{4,5\}$. Abueida and Daven [2] proved that there exists a $\left\{p K_{k}, q S_{k+1}\right\}$-decomposition of K_{n}, for $k \geq 3$ and $n \equiv 0,1(\bmod k)$. Abueida and O'Neil [4] proved that for $k \in\{3,4,5\}$, there exists a $\left\{p C_{k}, q S_{k}\right\}$-decomposition of $K_{n}(\lambda)$, whenever $n \geq k+1$ except for the ordered triples $(k, n, \lambda) \in\{(3,4,1),(4,5,1),(5,6,1),(5,6,2)$, $(5,6,4),(5,7,1),(5,8,1)\}$. Shyu $[8,9]$ obtained a necessary and sufficient condition on (p, q) for the existence of $\left\{p P_{4}, q S_{4}\right\}$-decomposition of K_{n} and $K_{m, n}$. Priyadharsini and Muthusamy [7] established necessary and sufficient conditions for the existence of the $\left(G_{n}, H_{n}\right)$-multidecomposition of $K_{n}(\lambda)$ where $G_{n}, H_{n} \in\left\{C_{n}, P_{n-1}, S_{n-1}\right\}$. Jeevadoss and Muthusamy [6] obtained necessary and sufficient conditions for $\left\{p P_{5}, q C_{4}\right\}$-decomposition of product graphs

In this paper, we show that the necessary conditions are sufficient for the existence of a $\left\{p P_{4}, q S_{4}\right\}$-decomposition of $K_{m} \square K_{n}, K_{m} \times K_{n}$ and $K_{m} \otimes$ $\overline{K_{n}}$, where p and q are nonnegative integers. A decomposition of a graph G into p copies of a path of length k and q copies of a star with k edges for every admissible pair (p, q) will be referred to as a $(k ; p, q)$-decomposition. To prove our results we state the following:

Theorem 1.1 ([9]). Let $p, q \geq 0$, and let $0<m \leq n$ be integers. There exists a $(3 ; p, q)$-decomposition of $K_{m, n}$ if and only if the following conditions hold:

1. $3(p+q)=m n$;
2. $p \geq 1 \Rightarrow m \geq 2$;
3. $(m=3 \vee(m=2 \wedge n \equiv 0(\bmod 3))) \Rightarrow p \neq 1$.

Theorem 1.2 ([8]). Let $p, q \geq 0$ and $n>0$ be integers. There exists a $(3 ; p, q)$-decomposition of K_{n} if and only if $n \geq 6$ and $3(p+q)=\frac{n(n-1)}{2}$.

Remark 1.1. If G_{i} has a $\left(3 ; p_{i}, q_{i}\right)$-decomposition, for $i=1,2$, then $G_{1} \cup G_{2}$ has a $\left(3 ; p_{1}+p_{2}, q_{1}+q_{2}\right)$-decomposition.

Remark 1.2. If two stars S_{4}^{1} and S_{4}^{2} with distinct centers, share at least two vertices, then $S_{4}^{1} \oplus S_{4}^{2}$ can be decomposed into two P_{4}.

Remark 1.3. Given a star $(a ; u, v, w)$, the set $\{((a, i) ;(u, j),(v, j),(w, j))$, $1 \leq i \neq j \leq n\}$ provides an S_{4}-decomposition of $(a ; u, v, w) \times K_{n}$.

Remark 1.4. Given a star $(a ; u, v, w)$, the set $\{((a, i) ;(u, j),(v, j),(w, j))$, $1 \leq i, j \leq n\}$ provides an S_{4}-decomposition of $(a ; u, v, w) \otimes \overline{K_{n}}$.

2 Base constructions

In this section we establish a necessary and sufficient conditions for the existence of $(3 ; p, q)$-decomposition in $K_{n, n}-I$.
Example 1. There exists a $(3 ; p, q)$-decomposition of $G_{1}=K_{5} \backslash E\left(K_{2}\right)$ and $G_{2}=K_{8} \backslash E\left(K_{2}\right)$, for every admissible pair (p, q) of nonnegative integers with $3(p+q)=\left|E\left(G_{i}\right)\right|, i=1,2$.
Solution: Let $V\left(K_{r}\right)=\left\{x_{i}: 1 \leq i \leq r\right\}$. We give a $(3 ; p, q)$-decomposition of $K_{5} \backslash\left(E\left(K_{2}\right)=x_{1} x_{2}\right)$ as follows:

1. $p=0, q=3$. The required stars are $\left(x_{5} ; x_{1}, x_{2}, x_{3}\right),\left(x_{4} ; x_{5}, x_{1}, x_{2}\right)$, $\left(x_{3} ; x_{1}, x_{2}, x_{4}\right)$.
2. $p=1, q=2$. The required path and stars are $x_{4} x_{2} x_{3} x_{1}$ and $\left(x_{5} ; x_{1}, x_{2}, x_{3}\right),\left(x_{4} ; x_{3}, x_{5}, x_{1}\right)$ respectively.
3. $p=2, q=1$. The required paths and star are $x_{5} x_{1} x_{3} x_{4}, x_{3} x_{2} x_{4} x_{1}$ and $\left(x_{5} ; x_{4}, x_{2}, x_{3}\right)$ respectively.
4. $p=3, q=0$. The required paths and are $x_{1} x_{5} x_{3} x_{2}, x_{1} x_{4} x_{5} x_{2}$, $x_{1} x_{3} x_{4} x_{2}$.
To prove the required decomposition of $K_{8} \backslash E\left(K_{2}\right)$, first we decompose $K_{8} \backslash\left(E\left(K_{2}\right)=x_{1} x_{4}\right)$ into $9 S_{4}$ as follows:

$$
\begin{aligned}
& \left\{\left(x_{2} ; x_{6}, \boldsymbol{x}_{\boldsymbol{7}}, \boldsymbol{x}_{\boldsymbol{8}}\right),\left(x_{5} ; x_{6}, \boldsymbol{x}_{\boldsymbol{7}}, x_{1}\right)\right\}, \\
& \left\{\left(x_{4} ; x_{5}, x_{6}, \boldsymbol{x}_{\boldsymbol{7}}\right),\left(x_{6} ; \boldsymbol{x}_{\boldsymbol{7}}, \boldsymbol{x}_{\mathbf{8}}, x_{1}\right)\right\}, \\
& \left\{\left(x_{3} ; \boldsymbol{x}_{\boldsymbol{4}}, \boldsymbol{x}_{\mathbf{5}}, x_{6}\right),\left(x_{8} ; x_{3}, x_{4}, \boldsymbol{x}_{\mathbf{5}}\right)\right\}, \\
& \left\{\left(x_{2} ; \boldsymbol{x}_{\mathbf{3}}, \boldsymbol{x}_{\mathbf{4}}, x_{5}\right),\left(x_{1} ; x_{2}, \boldsymbol{x}_{\mathbf{3}}, x_{8}\right),\left(x_{7} ; x_{8}, x_{3}, x_{1}\right)\right\} .
\end{aligned}
$$

Now, the last three S_{4} has a decomposition into either $\left\{1 P_{4}, 2 S_{4}\right\}$ or $\left\{3 P_{4}\right\}$ as follows:

$$
\left\{x_{2} x_{3} x_{1} x_{8},\left(x_{2} ; x_{1}, x_{4}, x_{5}\right),\left(x_{7} ; x_{8}, x_{3}, x_{1}\right)\right\}
$$

or

$$
\left\{x_{7} x_{8} x_{1} x_{3}, x_{5} x_{2} x_{3} x_{7}, x_{7} x_{1} x_{2} x_{4}\right\}
$$

By Remark 1.2, required number of paths and stars for the remaining choices can be obtained from the paired stars given above. Hence $K_{8} \backslash E\left(K_{2}\right)$ has a $(3 ; p, q)$-decomposition.

Example 2. There exists a $(3 ; p, q)$-decomposition of $G_{1}=K_{6} \backslash\left\{P_{1,1}, P_{1,2}\right\}$ and $G_{2}=K_{6} \backslash\left\{P_{2,1}, P_{2,2}\right\}$, where $P_{1,1}=x_{3} x_{4} x_{6} x_{5}, P_{1,2}=x_{3} x_{5} x_{1} x_{6}$, $P_{2,1}=x_{3} x_{1} x_{2} x_{5}$ and $P_{2,2}=x_{1} x_{6} x_{2} x_{3}$, for every admissible pair (p, q) of nonnegative integers with $3(p+q)=\left|E\left(G_{i}\right)\right|, i=1,2$.

Solution: Let $V\left(K_{6}\right)=\left\{x_{i}: 1 \leq i \leq 6\right\}$. Now, $K_{6} \backslash\left\{P_{1,1}, P_{1,2}\right\}$ has a (3; p, q)-decomposition as follows:

1. $p=0, q=3$. The required stars are $\left(x_{3} ; x_{6}, x_{1}, x_{2}\right),\left(x_{4} ; x_{5}, x_{2}, x_{1}\right)$, $\left(x_{2} ; x_{6}, x_{5}, x_{1}\right)$.
2. $p=1, q=2$. The required path and stars are $x_{1} x_{4} x_{5} x_{2}$ and $\left(x_{3} ; x_{6}, x_{1}, x_{2}\right),\left(x_{2} ; x_{6}, x_{4}, x_{1}\right)$ respectively.
3. $p=2, q=1$. The required paths and star are $x_{1} x_{2} x_{5} x_{4}, x_{6} x_{2} x_{4} x_{1}$ and $\left(x_{3} ; x_{6}, x_{1}, x_{2}\right)$ respectively.
4. $p=3, q=0$. The required paths are $x_{6} x_{3} x_{1} x_{2}, x_{3} x_{2} x_{5} x_{4}, x_{6} x_{2} x_{4} x_{1}$. The $(3 ; p, q)$-decomposition of $K_{6} \backslash\left\{P_{2,1}, P_{2,2}\right\}$ is given below.
5. $p=0, q=3$. The required stars are $\left(x_{3} ; x_{6}, x_{5}, x_{4}\right),\left(x_{4} ; x_{6}, x_{2}, x_{1}\right)$, $\left(x_{5} ; x_{6}, x_{4}, x_{1}\right)$.
6. $p=1, q=2$. The required path and stars are $x_{6} x_{3} x_{4} x_{5}$ and $\left(x_{4} ; x_{6}, x_{2}, x_{1}\right),\left(x_{5} ; x_{6}, x_{4}, x_{1}\right)$ respectively.
7. $p=2, q=1$. The required paths and star are $x_{1} x_{5} x_{4} x_{2}, x_{5} x_{6} x_{4} x_{1}$ and $\left(x_{3} ; x_{6}, x_{5}, x_{4}\right)$ respectively.
8. $p=3, q=0$. The required paths are $x_{1} x_{5} x_{4} x_{2}, x_{3} x_{5} x_{6} x_{4}, x_{6} x_{3} x_{4} x_{1}$.

Lemma 2.1. There exists a (3;p,q)-decomposition of $K_{4,4}-I$, for every admissible pair (p, q) of nonnegative integers with $3(p+q)=\left|E\left(K_{4,4}-I\right)\right|$ and $p \neq 1$.
Proof. Let $V(G)=\left\{x_{1}, \cdots, x_{4}\right\} \cup\left\{y_{1}, \cdots, y_{4}\right\}$. First we decompose $K_{4,4}-I$ into $4 S_{4}$ as follows:

$$
\left\{\left(x_{1} ; \boldsymbol{y}_{\mathbf{2}}, \boldsymbol{y}_{\mathbf{3}}, y_{4}\right),\left(x_{2} ; y_{1}, \boldsymbol{y}_{\mathbf{3}}, y_{4}\right)\right\},\left\{\left(x_{3} ; y_{1}, \boldsymbol{y}_{2}, \boldsymbol{y}_{4}\right),\left(x_{4} ; y_{1}, \boldsymbol{y}_{\mathbf{2}}, y_{3}\right)\right\}
$$

By Remark 1.2, we have the required even number of paths and stars from the paired stars. The last $3 S_{4}$ gives $3 P_{4}$ as follows:

$$
\left\{x_{2} y_{1} x_{4} y_{3}, y_{3} x_{2} y_{4} x_{3}, x_{4} y_{2} x_{3} y_{1}\right\}
$$

Lemma 2.2. There exists a (3; p,q)-decomposition of $K_{6,6}-I$, for every admissible pair (p, q) of nonnegative integers with $3(p+q)=\left|E\left(K_{6,6}-I\right)\right|$.
Proof. Let $V(G)=\left\{x_{1}, \cdots, x_{6}\right\} \cup\left\{y_{1}, \cdots, y_{6}\right\}$. First we decompose $K_{6,6}-I$ into $10 S_{4}$ as follows:

$$
\begin{array}{lll}
\left\{\left(x_{2} ; \boldsymbol{y}_{1}, \boldsymbol{y}_{\mathbf{3}}, y_{4}\right),\left(x_{5} ; \boldsymbol{y}_{\mathbf{3}}, y_{4}, y_{6}\right)\right\}, & \left\{\left(x_{4} ; y_{3}, \boldsymbol{y}_{\mathbf{5}}, \boldsymbol{y}_{\mathbf{6}}\right),\left(x_{6} ; y_{3}, y_{4}, \boldsymbol{y}_{\mathbf{5}}\right)\right\}, \\
\left\{\left(y_{5} ; \boldsymbol{x}_{\mathbf{1}}, \boldsymbol{x}_{\mathbf{2}}, x_{3}\right),\left(y_{6} ; x_{1}, \boldsymbol{x}_{\mathbf{2}}, x_{3}\right)\right\}, & \left\{\left(x_{1} ; \boldsymbol{y}_{\mathbf{2}}, \boldsymbol{y}_{\mathbf{3}}, y_{4}\right),\left(x_{3} ; y_{1}, \boldsymbol{y}_{\mathbf{2}}, y_{4}\right)\right\}, \\
\left\{\left(y_{1} ; \boldsymbol{x}_{\boldsymbol{4}}, \boldsymbol{x}_{\mathbf{5}}, x_{6}\right),\right. & \left.\left(y_{2} ; x_{4}, \boldsymbol{x}_{\mathbf{5}}, x_{6}\right)\right\} . &
\end{array}
$$

Now, the last $3 S_{4}$ can be decomposed into $3 P_{4}$ as follows:

$$
y_{4} x_{3} y_{2} x_{6}, x_{6} y_{1} x_{5} y_{2}, y_{2} x_{4} y_{1} x_{3}
$$

By Remark 1.2, the required decomposition for the remaining choices of p and q other than $p=1$ can be obtained from the paired stars given above. For $p=1$, the required path and stars are $x_{1} y_{2} x_{3} y_{4},\left(x_{3} ; y_{1}, y_{5}, y_{6}\right)$, $\left(x_{1} ; y_{3}, y_{5}, y_{6}\right),\left(x_{2} ; y_{1}, y_{3}, y_{4}\right),\left(y_{2} ; x_{4}, x_{5}, x_{6}\right),\left(y_{1} ; x_{4}, x_{5}, x_{6}\right),\left(y_{3} ; x_{4}, x_{5}, x_{6}\right)$, $\left(y_{4} ; x_{1}, x_{5}, x_{6}\right),\left(y_{5} ; x_{2}, x_{4}, x_{6}\right),\left(y_{6} ; x_{2}, x_{4}, x_{5}\right)$.

Lemma 2.3. There exists a (3;p,q)-decomposition of $K_{7,7}-I$, for every admissible pair (p, q) of nonnegative integers with $3(p+q)=\left|E\left(K_{7,7}-I\right)\right|$.

Proof. Let $V(G)=\left\{x_{1}, \cdots, x_{7}\right\} \cup\left\{y_{1}, \cdots, y_{7}\right\}$. First we decompose $K_{7,7}-I$ into $14 S_{4}$ as follows:

$$
\begin{aligned}
& \left\{\left(x_{2} ; y_{1}, \boldsymbol{y}_{\mathbf{3}}, \boldsymbol{y}_{\mathbf{4}}\right),\left(x_{7} ; y_{1}, \boldsymbol{y}_{\mathbf{3}}, y_{2}\right)\right\},\left\{\left(x_{5} ; \boldsymbol{y}_{\mathbf{3}}, \boldsymbol{y}_{\mathbf{4}}, y_{6}\right),\left(x_{7} ; \boldsymbol{y}_{\mathbf{4}}, y_{5}, y_{6}\right)\right\}, \\
& \left\{\left(x_{1} ; \boldsymbol{y}_{\mathbf{5}}, \boldsymbol{y}_{\mathbf{6}}, y_{7}\right),\left(x_{2} ; y_{5}, \boldsymbol{y}_{\mathbf{6}}, y_{7}\right)\right\},\left\{\left(x_{3} ; y_{5}, \boldsymbol{y}_{\mathbf{6}}, \boldsymbol{y}_{\boldsymbol{7}}\right),\left(x_{4} ; y_{3}, y_{5}, \boldsymbol{y}_{\mathbf{6}}\right)\right\}, \\
& \left\{\left(x_{6} ; \boldsymbol{y}_{\mathbf{3}}, y_{4}, y_{5}\right),\left(x_{1} ; \boldsymbol{y}_{\mathbf{2}}, \boldsymbol{y}_{\mathbf{3}}, y_{4}\right)\right\},\left\{\left(x_{3} ; \boldsymbol{y}_{\mathbf{1}}, y_{2}, y_{4}\right),\left(x_{4} ; \boldsymbol{y}_{\mathbf{7}}, \boldsymbol{y}_{\mathbf{1}}, y_{2}\right)\right\}, \\
& \left\{\left(x_{5} ; \boldsymbol{y}_{\boldsymbol{7}}, \boldsymbol{y}_{\mathbf{1}}, y_{2}\right),\left(x_{6} ; \boldsymbol{y}_{\boldsymbol{7}}, y_{1}, y_{2}\right)\right\} .
\end{aligned}
$$

Now, the last $3 S_{4}$ can be decomposed into $3 P_{4}$ as follows:

$$
\left\{x_{5} y_{7} x_{4} y_{2}, x_{6} y_{2} x_{5} y_{1}, x_{4} y_{1} x_{6} y_{7}\right\}
$$

By Remark 1.2, the required decomposition for the remaining choices of p and q other than $p=1$ can be obtained from the paired stars given above. For $p=1$, the required path and stars are $x_{1} y_{2} x_{3} y_{4},\left(x_{3} ; y_{1}, y_{5}, y_{6}\right)$, $\left(x_{1} ; y_{3}, y_{5}, y_{6}\right),\left(x_{2} ; y_{1}, y_{3}, y_{4}\right),\left(y_{2} ; x_{4}, x_{5}, x_{6}\right),\left(y_{1} ; x_{4}, x_{5}, x_{6}\right),\left(y_{3} ; x_{4}, x_{5}, x_{6}\right)$, $\left(y_{4} ; x_{1}, x_{5}, x_{6}\right),\left(y_{5} ; x_{2}, x_{4}, x_{6}\right),\left(y_{6} ; x_{2}, x_{4}, x_{5}\right),\left(x_{7} ; y_{1}, y_{2}, y_{3}\right),\left(x_{7} ; y_{4}, y_{5}, y_{6}\right)$, $\left(y_{7} ; x_{1}, x_{2}, x_{3}\right),\left(y_{7} ; x_{4}, x_{5}, x_{6}\right)$.

Lemma 2.4. There exists a (3;p,q)-decomposition of $K_{9,9}-I$, for every admissible pair (p, q) of nonnegative integers with $3(p+q)=\left|E\left(K_{9,9}-I\right)\right|$.

Proof. Let $V(G)=\left\{x_{1}, \cdots, x_{9}\right\} \cup\left\{y_{1}, \cdots, y_{9}\right\}$. We can write

$$
K_{9,9}-I=\left(K_{6,6}-I\right) \oplus K_{6,3} \oplus K_{3,6} \oplus\left(K_{3,3}-I\right)
$$

By Lemma 2.1, $K_{6,6}-I$ has a $(3 ; p, q)$-decomposition. Now, decompose $G\left(=K_{6,3} \oplus K_{3,6} \oplus\left(K_{3,3}-I\right)\right)$ into $14 S_{4}$ as follows:

$$
\begin{array}{ll}
\left\{\left(x_{7} ; \boldsymbol{y}_{\mathbf{1}}, \boldsymbol{y}_{\mathbf{2}}, y_{3}\right),\left(x_{8} ; \boldsymbol{y}_{\mathbf{2}}, y_{3}, y_{6}\right)\right\}, & \left\{\left(x_{9} ; \boldsymbol{y}_{\mathbf{3}}, \boldsymbol{y}_{\mathbf{6}}, y_{8}\right),\left(x_{7} ; \boldsymbol{y}_{\mathbf{6}}, y_{8}, y_{9}\right)\right\}, \\
\left\{\left(x_{8} ; \boldsymbol{y}_{\boldsymbol{7}}, \boldsymbol{y}_{\mathbf{9}}, y_{1}\right),\left(x_{9} ; \boldsymbol{y}_{\boldsymbol{7}}, y_{1}, y_{2}\right)\right\}, & \left\{\left(y_{4} ; \boldsymbol{x}_{\boldsymbol{7}}, \boldsymbol{x}_{\mathbf{8}}, x_{9}\right),\left(y_{5} ; x_{7}, \boldsymbol{x}_{\mathbf{8}}, x_{9}\right)\right\}, \\
\left\{\left(y_{7} ; \boldsymbol{x}_{\mathbf{1}}, \boldsymbol{x}_{\mathbf{2}}, x_{3}\right),\left(y_{8} ; \boldsymbol{x}_{\mathbf{2}}, x_{3}, x_{4}\right)\right\}, & \left\{\left(y_{9} ; \boldsymbol{x}_{\mathbf{3}}, \boldsymbol{x}_{\mathbf{4}}, x_{5}\right),\left(y_{7} ; \boldsymbol{x}_{\mathbf{4}}, x_{5}, x_{6}\right)\right\}, \\
\left\{\left(y_{8} ; \boldsymbol{x}_{\mathbf{5}}, \boldsymbol{x}_{\mathbf{6}}, x_{1}\right),\left(y_{9} ; \boldsymbol{x}_{\mathbf{6}}, x_{1}, x_{2}\right)\right\} . &
\end{array}
$$

Now, the last $3 S_{4}$ can be decompose into $3 P_{4}$ as follows:

$$
\left\{x_{4} y_{7} x_{5} y_{8}, x_{2} y_{9} x_{6} y_{7}, y_{9} x_{1} y_{8} x_{6}\right\}
$$

Hence by Remark $1.2, G$ has a $(3 ; p, q)$-decomposition with $p \neq 1$. Now, by Remark 1.1, we have the desired decomposition of $K_{9,9}-I$.

Lemma 2.5. Let p, q be nonnegative integers and G be an r-regular graph on v vertices. If G has a $(3 ; p, q)$-decomposition, then $r v \equiv 0(\bmod 6)$.

Proof. Since G is r-regular with v vertices, G has $r v / 2$ edges. Now, assuume that G has a $(3 ; p, q)$-decomposition. Then the number of edges in the graph must be divisible by 3 , i.e., $6 \mid r v$ and hence $r v \equiv 0(\bmod 6)$.

Theorem 2.6. The graph $K_{n, n}-I$ has a $(3 ; p, q)$-decomposition for every admissible pair (p, q) of nonnegative integers with $3(p+q)=n(n-1)$ if and only if $n \equiv 0$ or $1(\bmod 3)$ with $(n, p) \neq(4,1)$ and $q=0$ when $n=3$.

Proof. Necessity. Since $K_{n, n}-I$ is $(n-1)$-regular with $2 n$ vertices, $n \equiv 0$ or $1(\bmod 3)$ follows from Lemma 2.5 . When $n=3, K_{3,3}-I$ is 2-regular and hence it does not contains any star with 3 edges, therefore $q=0$. Suppose there is a $\left\{P_{4}, 3 S_{4}\right\}$-decomposition of $K_{4,4}-I$. Let $V\left(K_{4,4}-I\right)=V=V_{1} \cup V_{2}=\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\} \cup\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ and $I=$ $\left\{u_{1} v_{1}, u_{2} v_{2}, u_{3} v_{3}, u_{4} v_{4}\right\}$. Without loss of generality let $P_{4}=u_{1} v_{2} u_{3} v_{1}$. So $\operatorname{deg}(u)=3$ only for $u=u_{2}, u_{4} \in V_{1}$ and $u=v_{3}, v_{4} \in V_{2}$ in $\left(K_{4,4}-I\right) \backslash E\left(P_{4}\right)$. Then the centers of two stars are contained in exactly one partite set say V_{1}. So the remaining graph is not a star since $\operatorname{deg}(u) \leq 2$ for all $u \in V$, therefore $p \neq 1$.
Sufficiency. For $n=3$, the paths are $x_{1} y_{2} x_{3} y_{1}, x_{1} y_{3} x_{2} y_{1}$ and we proved such decomposition in Lemma 2.1 when $n=4$. We construct the required decomposition for the remaining choices of n in four cases.

Figure 1: The graph $K_{n, n}-I$.

Case(1) $n \equiv 0(\bmod 6)$.
Let $n=6 k, k>0$ be an integer. We can write

$$
K_{n, n}-I=K_{6 k, 6 k}-I=k\left(K_{6,6}-I\right) \oplus k(k-1) K_{6,6} A
$$

(See Figure 1 with $s=k, i=0$). By Theorem 1.1 and Lemma 2.2, $K_{6,6}-I$ and $K_{6,6}$ have a $(3 ; p, q)$-decomposition. Hence by Remark 1.1, $K_{n, n}-I$ has a $(3 ; p, q)$-decomposition.
Case(2) $n \equiv 1(\bmod 6)$.
Let $n=6 k+1, k>0$ be an integer. We can write

$$
\begin{aligned}
& K_{n, n}-I=K_{6 k+1,6 k+1}-I \\
& \quad=(k-1)\left(K_{6,6}-I\right) \oplus\left(K_{7,7}-I\right) \\
& \quad \oplus(k-1)(k-2) K_{6,6} \oplus 2(k-1) K_{7,6}
\end{aligned}
$$

(See Figure 1 with $s=k-1, i=7$). By Lemmas 2.2 and 2.3, $K_{6,6}-I$ and $K_{7,7}-I$ have a $(3 ; p, q)$-decomposition. Also, by Theorem $1.1 K_{6,6}$ and $K_{7,6}$ have a ($3 ; p, q$)-decomposition. Hence by Remark 1.1, $K_{n, n}-I$ has a $(3 ; p, q)$-decomposition.
Case(3) $n \equiv 3(\bmod 6)$.
Let $n=6 k+3, k>0$ be an integer. We can write

$$
\begin{aligned}
& K_{n, n}-I=K_{6 k+3,6 k+3}-I \\
& \quad=(k-1)\left(K_{6,6}-I\right) \oplus\left(K_{9,9}-I\right) \\
& \quad \oplus(k-1)(k-2) K_{6,6} \oplus 2(k-1) K_{9,6}
\end{aligned}
$$

(See Figure 1 with $s=k-1, i=9$). By Lemmas 2.2 and $2.4, K_{6,6}-I$ and $K_{9,9}-I$ have a $(3 ; p, q)$-decomposition. Also, by Theorem $1.1 K_{6,6}$
and $K_{9,6}$ have a ($3 ; p, q$)-decomposition. Hence by Remark 1.1, $K_{n, n}-I$ has a $(3 ; p, q)$-decomposition.

Case (4) $n \equiv 4(\bmod 6)$.
Let $n=6 k+4, k>0$ be an integer. We can write

$$
\begin{aligned}
K_{n, n}-I & =K_{6 k+4,6 k+4}-I \\
& =k\left(K_{6,6}-I\right) \oplus k(k-1) K_{6,6} \oplus\left(K_{4,4}-I\right) \oplus 2 k K_{6,4}
\end{aligned}
$$

(See Figure 1 with $s=k, i=4$). By Lemmas 2.1 and $2.2, K_{4,4}-I$ and $K_{6,6}-I$ have a $(3 ; p, q)$-decomposition. Also, by Theorem $1.1 K_{6,6}$ and $K_{6,4}$ have a $(3 ; p, q)$-decomposition. Hence by Remark 1.1, $K_{n, n}-I$ has a $(3 ; p, q)$-decomposition.

$3(3 ; p, q)$-decomposition of $K_{m} \square K_{n}$

In this section we obtain the existence of $(3 ; p, q)$-decomposition of Cartesian product of complete graphs.

Lemma 3.1. There exists a $(3 ; p, q)$-decomposition of $K_{6} \square K_{5}$, for every admissible pair (p, q) of nonnegative integers with $3(p+q)=\left|E\left(K_{6} \square K_{5}\right)\right|$. Proof. Let $V\left(K_{6} \square K_{5}\right)=\left\{x_{i, j}: 1 \leq i \leq 6,1 \leq j \leq 5\right\}$. We can write

$$
\begin{aligned}
& K_{6} \square K_{5}=3 K_{6} \oplus 6\left(K_{5} \backslash E\left(K_{2}\right)\right) \oplus\left(K_{6} \backslash\left\{P_{1,1}, P_{1,2}\right\}\right) \\
& \quad \oplus\left(K_{6} \backslash\left\{P_{2,1}, P_{2,2}\right\}\right) \oplus\left(P_{1,1} \oplus P_{1,2} \oplus P_{2,1} \oplus P_{2,2} \oplus 6 K_{2}\right),
\end{aligned}
$$

where

$$
\begin{aligned}
P_{1,1} & =x_{3,1} x_{4,1} x_{6,1} x_{5,1}, \\
P_{1,2} & =x_{3,1} x_{5,1} x_{1,1} x_{6,1} \\
P_{2,1} & =x_{3,2} x_{1,2} x_{2,2} x_{5,2} \\
P_{2,2} & =x_{1,2} x_{6,2} x_{2,2} x_{3,2}
\end{aligned}
$$

Now, by Examples 1 and 2:

$$
6\left(K_{5} \backslash E\left(K_{2}\right)\right), K_{6} \backslash\left\{P_{1,1}, P_{1,2}\right\} \text { and } K_{6} \backslash\left\{P_{2,1}, P_{2,2}\right\}
$$

have a $(3 ; p, q)$-decomposition. Also, by Theorem $1.2, K_{6}$ has a $(3 ; p, q)$-decomposition. We prove $\left(P_{1,1} \oplus P_{1,2} \oplus P_{2,1} \oplus P_{2,2} \oplus 6 K_{2}\right)$ has a $(3 ; p, q)$ decomposition as follows:

1. $p=0, q=6$. The required stars are
$\left(x_{6,1} ; x_{1,1}, x_{5,1}, x_{6,2}\right),\left(x_{5,1} ; x_{1,1}, x_{3,1}, x_{5,2}\right),\left(x_{4,1} ; x_{3,1}, x_{6,1}, x_{4,2}\right)$, $\left(x_{2,2} ; x_{6,2}, x_{5,2}, x_{2,1}\right),\left(x_{1,2} ; x_{1,1}, x_{2,2}, x_{6,2}\right),\left(x_{3,2} ; x_{3,1}, x_{2,2}, x_{1,2}\right)$.
2. $p=1, q=5$. The required path and stars are
$x_{3,1} x_{3,2} x_{2,2} x_{1,2}$ and $\left(x_{6,1} ; x_{1,1}, x_{5,1}, x_{6,2}\right),\left(x_{5,1} ; x_{1,1}, x_{3,1}, x_{5,2}\right)$, $\left(x_{4,1} ; x_{3,1}, x_{6,1}, x_{4,2}\right),\left(x_{2,2} ; x_{6,2}, x_{5,2}, x_{2,1}\right),\left(x_{1,2} ; x_{1,1}, x_{3,2}, x_{6,2}\right)$ respectively.
3. $p=2, q=4$. The required paths and stars are
$x_{1,1} x_{1,2} x_{3,2} x_{3,1}, x_{6,2} x_{1,2} x_{2,2} x_{3,2}$ and ($x_{6,1} ; x_{1,1}, x_{5,1}, x_{6,2}$), $\left(x_{5,1} ; x_{1,1}, x_{3,1}, x_{5,2}\right),\left(x_{4,1} ; x_{3,1}, x_{6,1}, x_{4,2}\right),\left(x_{2,2} ; x_{6,2}, x_{5,2}, x_{2,1}\right)$ respectively.
4. $p=3, q=3$. The required paths and stars are
$x_{1,1} x_{1,2} x_{2,2} x_{2,1}, x_{5,2} x_{2,2} x_{3,2} x_{3,1}, x_{3,2} x_{1,2} x_{6,2} x_{2,2}$ and
$\left(x_{6,1} ; x_{1,1}, x_{5,1}, x_{6,2}\right),\left(x_{5,1} ; x_{1,1}, x_{3,1}, x_{5,2}\right),\left(x_{4,1} ; x_{3,1}, x_{6,1}, x_{4,2}\right)$ respectively.
5. $p=4, q=2$. The required paths and stars are
$x_{1,1} x_{1,2} x_{2,2} x_{2,1}, x_{1,1} x_{5,1} x_{3,1} x_{3,2}, x_{5,1} x_{5,2} x_{2,2} x_{3,2}$, $x_{3,2} x_{1,2} x_{6,2} x_{2,2}$ and $\left(x_{6,1} ; x_{1,1}, x_{5,1}, x_{6,2}\right),\left(x_{4,1} ; x_{3,1}, x_{6,1}, x_{4,2}\right)$ respectively.
6. $p=5, q=1$. The required paths and stars are
$x_{1,1} x_{1,2} x_{2,2} x_{2,1}, x_{3,2} x_{1,2} x_{6,2} x_{2,2}, x_{6,2} x_{6,1} x_{1,1} x_{5,1}$, $x_{5,1} x_{5,2} x_{2,2} x_{3,2}, x_{6,1} x_{5,1} x_{3,1} x_{3,2}$ and $\left(x_{4,1} ; x_{3,1}, x_{6,1}, x_{4,2}\right)$ respectively.
7. $p=6, q=0$. The required paths are
$x_{1,1} x_{1,2} x_{2,2} x_{2,1}, x_{3,2} x_{1,2} x_{6,2} x_{2,2}, x_{6,2} x_{6,1} x_{1,1} x_{5,1}$, $x_{5,1} x_{5,2} x_{2,2} x_{3,2}, x_{4,2} x_{4,1} x_{3,1} x_{3,2}, x_{4,1} x_{6,1} x_{5,1} x_{3,1}$.

Thus the graph $K_{6} \square K_{5}$ has a required decomposition.
Lemma 3.2. There exists a $(3 ; p, q)$-decomposition of $K_{3} \square K_{5}$, for every admissible pair (p, q) of nonnegative integers with $3(p+q)=\left|E\left(K_{3} \square K_{5}\right)\right|$. Proof. Let $V\left(K_{3} \square K_{5}\right)=\left\{x_{i, j}: 1 \leq i \leq 3,1 \leq j \leq 5\right\}$. First we decompose $K_{3} \square K_{5}$ into $15 S_{4}$ as follows:


```
{(x,2;\mp@subsup{\boldsymbol{x}}{\mathbf{1,2}}{\mathbf{2}},\mp@subsup{x}{2,3}{,},\mp@subsup{x}{2,4}{}),(\mp@subsup{x}{2,1}{};\mp@subsup{\boldsymbol{x}}{\mathbf{3},\mathbf{1}}{\prime},\mp@subsup{\boldsymbol{x}}{\mathbf{2,2}}{2},\mp@subsup{x}{2,3}{\prime})},
{(x,4,4};\mp@subsup{\boldsymbol{x}}{\mathbf{1,4}}{,},\mp@subsup{x}{2,5}{,},\mp@subsup{x}{2,1}{}),(\mp@subsup{x}{2,3}{};\mp@subsup{\boldsymbol{x}}{\mathbf{3},\mathbf{3}}{},\mp@subsup{\boldsymbol{x}}{\mathbf{2,4}}{,},\mp@subsup{x}{2,5}{2})}
{(x,\mp@code{3,2};\mp@subsup{\boldsymbol{x}}{\mathbf{2,2}}{2},\mp@subsup{\boldsymbol{x}}{\mathbf{3,3}}{,},\mp@subsup{x}{3,4}{)}),(\mp@subsup{x}{3,1}{\prime};\mp@subsup{x}{3,2}{,},\mp@subsup{\boldsymbol{x}}{\mathbf{3,3}}{,},\mp@subsup{x}{3,5}{\prime})},
{(x,4,4};\mp@subsup{\boldsymbol{x}}{\mathbf{2,4}}{\mathbf{4}},\mp@subsup{x}{3,5}{,},\mp@subsup{x}{3,1}{}),(\mp@subsup{x}{3,3}{};\mp@subsup{\boldsymbol{x}}{\mathbf{1,3}}{3},\mp@subsup{\boldsymbol{x}}{\mathbf{3,4}}{,},\mp@subsup{x}{3,5}{\prime})}
```



```
{(x,1,1;\mp@subsup{\boldsymbol{x}}{\mathbf{2,1}}{\mathbf{1}},\mp@subsup{\boldsymbol{x}}{\mathbf{1,2}}{2},\mp@subsup{x}{1,3}{\prime}),(\mp@subsup{x}{1,2}{;};\mp@subsup{\boldsymbol{x}}{\mathbf{3,2}}{2},\mp@subsup{x}{1,3}{},\mp@subsup{x}{1,5}{\prime}),(\mp@subsup{x}{1,4}{;};\mp@subsup{x}{3,4}{},\mp@subsup{x}{1,5}{},\mp@subsup{x}{1,2}{})}.
```

Now, the last $3 S_{4}$ can be decomposed into either $\left\{1 P_{4}, 2 S_{4}\right\}$ or $\left\{3 P_{4}\right\}$ as follows:

$$
\left\{x_{2,1} x_{1,1} x_{1,3} x_{1,2},\left(x_{1,2} ; x_{3,2}, x_{1,1}, x_{1,5}\right),\left(x_{1,4} ; x_{3,4}, x_{1,5}, x_{1,2}\right)\right\}
$$

or

$$
\left\{x_{1,1} x_{1,2} x_{1,4} x_{3,4}, x_{2,1} x_{1,1} x_{1,3} x_{1,2}, x_{3,2} x_{1,2} x_{1,5} x_{1,4}\right\}
$$

By Remark 1.2, required number of paths and stars for remaining choices of p and q can be obtained from the paired stars given above.

Lemma 3.3. There exists a $(3 ; p, q)$-decomposition of $K_{3} \square K_{6}$, for every admissible pair (p, q) of nonnegative integers with $3(p+q)=\left|E\left(K_{3} \square K_{6}\right)\right|$. Proof. Let $V\left(K_{3} \square K_{6}\right)=\left\{x_{i, j}: 1 \leq i \leq 3,1 \leq j \leq 6\right\}$. First we decompose $K_{3} \square K_{6}$ into $21 S_{4}$ as follows:

$$
\begin{aligned}
& \left\{\left(x_{3,4} ; x_{1,4}, x_{3,2}, \boldsymbol{x}_{\boldsymbol{3}, \mathbf{6}}\right),\left(x_{2,4} ; x_{1,4}, \boldsymbol{x}_{\mathbf{3}, \mathbf{4}}, \boldsymbol{x}_{\mathbf{2 , 1}}\right)\right\}, \\
& \left\{\left(x_{1,6} ; x_{3,6}, \boldsymbol{x}_{\mathbf{1}, \mathbf{1}}, \boldsymbol{x}_{1, \mathbf{2}}\right),\left(x_{1,5} ; x_{1,4}, \boldsymbol{x}_{\mathbf{1}, \mathbf{1}}, x_{1,6}\right)\right\}, \\
& \left\{\left(x_{1,3} ; \boldsymbol{x}_{\mathbf{1}, \mathbf{4}}, \boldsymbol{x}_{\mathbf{1}, \mathbf{5}}, x_{1,6}\right),\left(x_{1,4} ; \boldsymbol{x}_{\mathbf{1 , 2}}, x_{1,1}, x_{1,6}\right)\right\}, \\
& \left\{\left(x_{1,2} ; \boldsymbol{x}_{\mathbf{2}, \mathbf{2}}, x_{3,2}, x_{1,3}\right),\left(x_{1,1} ; \boldsymbol{x}_{\mathbf{2}, \mathbf{1}}, x_{1,3}, \boldsymbol{x}_{\mathbf{1 , 2}}\right)\right\}, \\
& \left\{\left(x_{3,4} ; \boldsymbol{x}_{\mathbf{3}, \mathbf{5}}, x_{3,3}, \boldsymbol{x}_{\mathbf{3}, \mathbf{1}}\right),\left(x_{3,2} ; \boldsymbol{x}_{\mathbf{3}, \mathbf{1}}, x_{2,2}, x_{3,3}\right)\right\}, \\
& \left\{\left(x_{1,5} ; \boldsymbol{x}_{\mathbf{1 , 2}}, \boldsymbol{x}_{\mathbf{2 , 5}}, x_{3,5}\right),\left(x_{2,5} ; x_{2,3}, \boldsymbol{x}_{\mathbf{2 , \mathbf { 1 }}}, x_{3,5}\right)\right\}, \\
& \left\{\left(x_{3,6} ; x_{3,5}, \boldsymbol{x}_{\mathbf{3 , 2}}, x_{2,6}\right),\left(x_{3,5} ; x_{3,3}, \boldsymbol{x}_{\mathbf{3}, \mathbf{1}}, \boldsymbol{x}_{\mathbf{3 , 2}}\right)\right\}, \\
& \left\{\left(x_{2,6} ; \boldsymbol{x}_{\mathbf{1}, \mathbf{6}}, x_{2,1}, x_{2,4}\right),\left(x_{2,3} ; x_{2,1}, \boldsymbol{x}_{\mathbf{2 , 6}}, \boldsymbol{x}_{\mathbf{2 , 2}}\right)\right\} \text {, } \\
& \left\{\left(x_{2,5} ; \boldsymbol{x}_{\mathbf{2}, \mathbf{2}}, \boldsymbol{x}_{\mathbf{2 , 4}}, x_{2,6}\right),\left(x_{2,2} ; \boldsymbol{x}_{\mathbf{2 , 1}}, x_{2,4}, x_{2,6}\right)\right\}, \\
& \left\{\left(x_{3,1} ; x_{1,1}, \boldsymbol{x}_{\mathbf{2}, \mathbf{1}}, \boldsymbol{x}_{\mathbf{3}, \mathbf{6}}\right),\left(x_{3,3} ; x_{3,1}, \boldsymbol{x}_{\mathbf{3}, \mathbf{6}}, x_{1,3}\right),\left(x_{2,3} ; x_{1,3}, x_{3,3}, x_{2,4}\right)\right\} .
\end{aligned}
$$

Now, the last $3 S_{4}$ can be decomposed into either $\left\{1 P_{4}, 2 S_{4}\right\}$ or $\left\{3 P_{4}\right\}$ as follows:

```
    {\mp@subsup{x}{2,3}{}\mp@subsup{x}{2,4}{}\mp@subsup{x}{1,3}{}\mp@subsup{x}{3,3}{},(\mp@subsup{x}{3,1}{};\mp@subsup{x}{1,1}{},\mp@subsup{x}{2,1}{},\mp@subsup{x}{3,6}{}),(\mp@subsup{x}{3,3}{};\mp@subsup{x}{3,1}{},\mp@subsup{x}{3,6}{},\mp@subsup{x}{2,3}{}))}
    {x,,3}\mp@subsup{x}{2,4}{4}\mp@subsup{x}{1,3}{}\mp@subsup{x}{3,3}{},\mp@subsup{x}{1,1}{}\mp@subsup{x}{3,1}{}\mp@subsup{x}{3,3}{}\mp@subsup{x}{2,3}{},\mp@subsup{x}{2,1}{}\mp@subsup{x}{3,1}{}\mp@subsup{x}{3,6}{}\mp@subsup{x}{3,3}{}}
```

By Remark 1.2, required number of paths and stars for remaining choices of p and q can be obtained from the paired stars given above.

Lemma 3.4. There exists a $(3 ; p, q)$-decomposition of $K_{4} \square K_{6}$, for every admissible pair (p, q) of nonnegative integers with $3(p+q)=\left|E\left(K_{4} \square K_{6}\right)\right|$. Proof. Let $V\left(K_{4} \square K_{6}\right)=\left\{x_{i, j}: 1 \leq i \leq 4,1 \leq j \leq 6\right\}$.
We can write $K_{4} \square K_{6}=\left(6 K_{4} \oplus 3 K_{6}\right) \oplus K_{6}$. First we decompose $\left(6 K_{4} \oplus 3 K_{6}\right)$ into $27 S_{4}$ as follows:


```
{(x,\mp@code{4,2};\mp@subsup{\boldsymbol{x}}{\mathbf{3,2}}{,},\mp@subsup{x}{2,2}{,},\mp@subsup{x}{1,2}{}),(\mp@subsup{x}{1,2}{};\mp@subsup{\boldsymbol{x}}{\mathbf{2,2}}{2},\mp@subsup{\boldsymbol{x}}{\mathbf{3,2}}{2},\mp@subsup{x}{1,3}{\prime})},
{(x,\mp@code{4,3};\mp@subsup{\boldsymbol{x}}{\mathbf{3,3}}{,},\mp@subsup{x}{2,3}{,},\mp@subsup{x}{1,3}{\prime}),(\mp@subsup{x}{2,3}{};\mp@subsup{\boldsymbol{x}}{\mathbf{1,3}}{\mathbf{3}},\mp@subsup{\boldsymbol{x}}{\mathbf{3,3}}{,},\mp@subsup{x}{2,4}{4})},
{(x,4;\mp@subsup{\boldsymbol{x}}{\mathbf{3,4}}{,},\mp@subsup{x}{2,4}{,},\mp@subsup{x}{1,4}{}),(\mp@subsup{x}{2,4}{;};\mp@subsup{\boldsymbol{x}}{\mathbf{1,4}}{\mathbf{4}},\mp@subsup{\boldsymbol{x}}{\mathbf{3,4}}{,},\mp@subsup{x}{2,1}{\prime})},
{(x, (x,5;}\mp@subsup{\boldsymbol{x}}{\mathbf{3,5}}{,},\mp@subsup{x}{2,5}{,},\mp@subsup{x}{1,5}{)}),(\mp@subsup{x}{1,5}{;};\mp@subsup{x}{1,2}{,},\mp@subsup{\boldsymbol{x}}{\mathbf{2,5}}{\mathbf{5}},\mp@subsup{\boldsymbol{x}}{\mathbf{3,5}}{)})}
{(x, (x,6};\mp@subsup{x}{3,6}{,},\mp@subsup{x}{2,6}{,},\mp@subsup{\boldsymbol{x}}{\mathbf{1,6}}{6}),(\mp@subsup{x}{2,6}{};\mp@subsup{\boldsymbol{x}}{\mathbf{1,6}}{\mathbf{6}},\mp@subsup{\boldsymbol{x}}{\mathbf{2,1}}{1},\mp@subsup{x}{2,4}{4})}
{(x,4,4};\mp@subsup{x}{1,4}{,},\mp@subsup{\boldsymbol{x}}{\mathbf{3,2}}{2},\mp@subsup{x}{3,6}{}),(\mp@subsup{x}{3,6}{};\mp@subsup{\boldsymbol{x}}{\mathbf{3,5}}{,},\mp@subsup{\boldsymbol{x}}{\mathbf{3,2}}{2},\mp@subsup{x}{2,6}{\prime})}
{(x,6; 利,6},\mp@subsup{\boldsymbol{x}}{\mathbf{1,1}}{\mathbf{1}},\mp@subsup{\boldsymbol{x}}{\mathbf{1,2}}{2}),(\mp@subsup{x}{1,5}{5};\mp@subsup{x}{1,4}{,},\mp@subsup{\boldsymbol{x}}{\mathbf{1,1}}{1},\mp@subsup{x}{1,6}{\prime})}
{(x,3,3};\mp@subsup{\boldsymbol{x}}{\mathbf{3,1}}{,},\mp@subsup{\boldsymbol{x}}{\mathbf{3,6}}{,},\mp@subsup{x}{1,3}{\prime}),(\mp@subsup{x}{3,5}{\prime};\mp@subsup{x}{3,3}{},\mp@subsup{\boldsymbol{x}}{\mathbf{3,1}}{,},\mp@subsup{x}{3,2}{2})}
{(x,4,4};\mp@subsup{\boldsymbol{x}}{\mathbf{3,5}}{,},\mp@subsup{x}{3,3}{,},\mp@subsup{\boldsymbol{x}}{\mathbf{3,1}}{\prime}),(\mp@subsup{x}{3,2}{2};\mp@subsup{\boldsymbol{x}}{\mathbf{3,1}}{\mathbf{1}},\mp@subsup{x}{2,2}{},\mp@subsup{x}{3,3}{\prime})}
```



```
{(x,5,5}\mp@subsup{\boldsymbol{x}}{\mathbf{2,2}}{,},\mp@subsup{\boldsymbol{x}}{\mathbf{2,4}}{,},\mp@subsup{x}{2,6}{\prime}),(\mp@subsup{x}{2,2}{};\mp@subsup{\boldsymbol{x}}{\mathbf{2,1}}{,},\mp@subsup{x}{2,4}{,},\mp@subsup{x}{2,6}{\prime})}
{(x,\mp@code{1,3};\mp@subsup{\boldsymbol{x}}{\mathbf{1,4}}{\mathbf{4}},\mp@subsup{\boldsymbol{x}}{\mathbf{1,5}}{\mathbf{5}},\mp@subsup{x}{1,6}{6}),(\mp@subsup{x}{1,4}{};\mp@subsup{\boldsymbol{x}}{\mathbf{1,2}}{2},\mp@subsup{x}{1,1}{1},\mp@subsup{x}{1,6}{\prime}),(\mp@subsup{x}{1,1}{};\mp@subsup{x}{2,1}{},\mp@subsup{x}{1,3}{},\mp@subsup{x}{1,2}{})}.
```

Now, the last $3 S_{4}$ can be decomposed into either $\left\{1 P_{4}, 2 S_{4}\right\}$ or $\left\{3 P_{4}\right\}$ as follows:

$$
\left\{x_{1,5} x_{1,3} x_{1,6} x_{1,4},\left(x_{1,4} ; x_{1,2}, x_{1,1}, x_{1,3}\right),\left(x_{1,1} ; x_{2,1}, x_{1,3}, x_{1,2}\right)\right\}
$$

or

$$
\left\{x_{1,5} x_{1,3} x_{1,6} x_{1,4}, x_{1,3} x_{1,1} x_{1,2} x_{1,4}, x_{2,1} x_{1,1} x_{1,4} x_{1,3}\right\}
$$

By Remark 1.2, required number of paths and stars for remaining choices of p and q can be obtained from the paired stars given above. Hence $\left(6 K_{4} \oplus 3 K_{6}\right)$ has a $(3 ; p, q)$-decomposition. Also, by Theorem $1.2, K_{6}$ has a (3; p, q)-decomposition. Hence by Remark 1.1, the graph $K_{4} \square K_{6}$ has the desired decomposition.

Lemma 3.5. There exists a $(3 ; p, q)$-decomposition of $K_{3} \square K_{8}$, for every admissible pair (p, q) of nonnegative integers with $3(p+q)=\left|E\left(K_{3} \square K_{8}\right)\right|$.

Proof. Let $V\left(K_{3} \square K_{8}\right)=\left\{x_{i, j}: 1 \leq i \leq 3,1 \leq j \leq 8\right\}$. First we decompose $K_{3} \square K_{8}$ into $36 S_{4}$ as follows:

$$
\begin{aligned}
& \left\{\left(x_{3,4} ; \boldsymbol{x}_{\mathbf{1}, \mathbf{4}}, \boldsymbol{x}_{\mathbf{3}, \mathbf{2}}, x_{3,6}\right),\left(x_{2,4} ; \boldsymbol{x}_{\mathbf{1}, \mathbf{4}}, x_{3,4}, x_{2,1}\right)\right\}, \\
& \left\{\left(x_{1,6} ; \boldsymbol{x}_{\mathbf{3}, \mathbf{6}}, \boldsymbol{x}_{\mathbf{1 , 1}}, x_{1,2}\right),\left(x_{1,1} ; x_{2,1}, \boldsymbol{x}_{\mathbf{1}, \mathbf{3}}, x_{1,2}\right)\right\}, \\
& \left\{\left(x_{3,1} ; \boldsymbol{x}_{\mathbf{1}, \mathbf{1}}, \boldsymbol{x}_{\mathbf{3}, \mathbf{6}}, x_{2,1}\right),\left(x_{3,3} ; x_{3,1}, \boldsymbol{x}_{\mathbf{3 , 6}}, x_{1,3}\right)\right\}, \\
& \left\{\left(x_{2,3} ; x_{1,3}, \boldsymbol{x}_{\mathbf{3 , 3}}, \boldsymbol{x}_{\mathbf{2}, \mathbf{4}}\right),\left(x_{2,8} ; x_{2,6}, \boldsymbol{x}_{\mathbf{2 , 4}}, x_{2,3}\right)\right\}, \\
& \left\{\left(x_{3,4} ; \boldsymbol{x}_{\mathbf{3}, \mathbf{5}}, \boldsymbol{x}_{\mathbf{3}, \mathbf{3}}, x_{3,1}\right),\left(x_{3,2} ; x_{3,1}, x_{2,2}, \boldsymbol{x}_{\mathbf{3}, \mathbf{3}}\right)\right\} \text {, } \\
& \left\{\left(x_{1,5} ; x_{1,2}, x_{2,5}, \boldsymbol{x}_{\mathbf{3}, \mathbf{5}}\right),\left(x_{2,5} ; \boldsymbol{x}_{\mathbf{2 , 3}}, \boldsymbol{x}_{\mathbf{3 , 5}}, x_{2,1}\right)\right\} \text {, } \\
& \left\{\left(x_{2,6} ; \boldsymbol{x}_{\mathbf{1 , 6}}, \boldsymbol{x}_{\mathbf{2 , 3}}, x_{2,5}\right),\left(x_{2,2} ; x_{2,1}, \boldsymbol{x}_{\mathbf{2 , 3}}, x_{2,6}\right)\right\}, \\
& \left\{\left(x_{2,1} ; x_{2,8}, \boldsymbol{x}_{\mathbf{2 , 3}}, \boldsymbol{x}_{\mathbf{2}, \boldsymbol{7}}\right),\left(x_{2,6} ; \boldsymbol{x}_{\mathbf{2 , 7}}, x_{2,4}, x_{2,1}\right)\right\} \text {, } \\
& \left\{\left(x_{2,4} ; \boldsymbol{x}_{\mathbf{2 , 2}}, x_{2,5}, x_{2,7}\right),\left(x_{2,5} ; x_{2,8}, \boldsymbol{x}_{\mathbf{2 , 2}}, \boldsymbol{x}_{\mathbf{2}, \mathbf{7}}\right)\right\} \text {, } \\
& \left\{\left(x_{1,7} ; \boldsymbol{x}_{\mathbf{1}, \mathbf{8}}, x_{2,7}, x_{3,7}\right),\left(x_{3,8} ; x_{3,7}, \boldsymbol{x}_{\mathbf{2 , 8}}, \boldsymbol{x}_{\mathbf{1}, \mathbf{8}}\right)\right\} \text {, } \\
& \left\{\left(x_{2,7} ; x_{3,7}, \boldsymbol{x}_{\mathbf{2}, \mathbf{3}}, \boldsymbol{x}_{\mathbf{2}, \mathbf{2}}\right),\left(x_{2,8} ; x_{2,7}, x_{1,8}, \boldsymbol{x}_{\mathbf{2}, \mathbf{2}}\right)\right\} \text {, } \\
& \left\{\left(x_{3,7} ; x_{3,1}, \boldsymbol{x}_{\mathbf{3}, \mathbf{2}}, \boldsymbol{x}_{\mathbf{3}, \mathbf{3}}\right),\left(x_{3,8} ; x_{3,1}, \boldsymbol{x}_{\mathbf{3 , 2}}, x_{3,3}\right)\right\} \text {, } \\
& \left\{\left(x_{3,7} ; x_{3,4}, \boldsymbol{x}_{\mathbf{3}, \mathbf{5}}, \boldsymbol{x}_{\mathbf{3 , 6}}\right),\left(x_{3,8} ; x_{3,4}, x_{3,5}, \boldsymbol{x}_{\mathbf{3 , 6}}\right)\right\} \text {, } \\
& \left\{\left(x_{1,2} ; \boldsymbol{x}_{\mathbf{2}, \mathbf{2}}, x_{3,2}, x_{1,3}\right),\left(x_{1,7} ; \boldsymbol{x}_{\mathbf{1}, \mathbf{1}}, \boldsymbol{x}_{\mathbf{1 , 2}}, x_{1,3}\right)\right\} \text {, } \\
& \left\{\left(x_{1,8} ; x_{1,1}, \boldsymbol{x}_{\mathbf{1}, \mathbf{2}}, \boldsymbol{x}_{\mathbf{1}, \mathbf{3}}\right),\left(x_{1,4} ; \boldsymbol{x}_{\mathbf{1 , 2}}, x_{1,1}, x_{1,6}\right)\right\} \text {, } \\
& \left\{\left(x_{1,3} ; x_{1,4}, x_{1,5}, \boldsymbol{x}_{1, \mathbf{6}}\right),\left(x_{1,5} ; x_{1,4}, \boldsymbol{x}_{\mathbf{1}, \mathbf{1}}, \boldsymbol{x}_{\mathbf{1}, \mathbf{6}}\right)\right\} \text {, } \\
& \left\{\left(x_{1,7} ; \boldsymbol{x}_{\mathbf{1}, \mathbf{4}}, \boldsymbol{x}_{\mathbf{1 , 5}}, x_{1,6}\right),\left(x_{1,8} ; x_{1,4}, \boldsymbol{x}_{\mathbf{1}, \mathbf{5}}, x_{1,6}\right)\right\}, \\
& \left\{\left(x_{3,6} ; x_{3,5}, \boldsymbol{x}_{\mathbf{3}, \mathbf{2}}, x_{2,6}\right),\left(x_{3,5} ; x_{3,3}, \boldsymbol{x}_{\boldsymbol{3}, \mathbf{1}}, \boldsymbol{x}_{\boldsymbol{3}, \mathbf{2}}\right)\right\} .
\end{aligned}
$$

Now, the last $2 S_{4}$ decompose into $\left\{1 P_{4}, 1 S_{4}\right\}$ as follows:

$$
\left\{x_{2,6} x_{3,6} x_{3,2} x_{3,5},\left(x_{3,5} ; x_{3,3}, x_{3,1}, x_{3,6}\right)\right\}
$$

By Remark 1.2, required number of paths and stars for remaining choices of p and q can be obtained from the paired stars given above.

Lemma 3.6. There exists a $(3 ; p, q)$-decomposition of $K_{6} \square K_{8}$, for every admissible pair (p, q) of nonnegative integers with $3(p+q)=\left|E\left(K_{6} \square K_{8}\right)\right|$. Proof. Let $V\left(K_{6} \square K_{8}\right)=\left\{x_{i, j}: 1 \leq i \leq 6,1 \leq j \leq 8\right\}$. We can write

$$
\begin{aligned}
& K_{6} \square K_{8}=6 K_{6} \oplus 6\left(K_{8} \backslash E\left(K_{2}\right)\right) \oplus\left(K_{6} \backslash\left\{P_{1,1}, P_{1,2}\right\}\right) \\
& \quad \oplus\left(K_{6} \backslash\left\{P_{2,1}, P_{2,2}\right\}\right) \oplus\left(P_{1,1} \oplus P_{1,2} \oplus P_{2,1} \oplus P_{2,2} \oplus 6 K_{2}\right),
\end{aligned}
$$

where $P_{1,1}=x_{3,1} x_{4,1} x_{6,1} x_{5,1}, P_{1,2}=x_{3,1} x_{5,1} x_{1,1} x_{6,1}, P_{2,1}=x_{3,2} x_{1,2} x_{2,2} x_{5,2}$, $P_{2,2}=x_{1,2} x_{6,2} x_{2,2} x_{3,2}$. Now, by Examples 1 and 2,

$$
6\left(K_{8} \backslash E\left(K_{2}\right)\right), K_{6} \backslash\left\{P_{1,1}, P_{1,2}\right\} \text { and } K_{6} \backslash\left\{P_{2,1}, P_{2,2}\right\}
$$

have a $(3 ; p, q)$-decomposition. Also by Theorem $1.2, K_{6}$ has a $(3 ; p, q)$-decomposition. We proved that $\left(P_{1,1} \oplus P_{1,2} \oplus P_{2,1} \oplus P_{2,2} \oplus 6 K_{2}\right)$ has a $(3 ; p, q)$-decomposition in Lemma 3.1. Hence $K_{6} \square K_{8}$ has a (3; p, q)-decomposition.

Lemma 3.7. There exists a $(3 ; p, q)$-decomposition of $K_{3} \square K_{4}$, for every admissible pair (p, q) of nonnegative integers with $3(p+q)=\left|E\left(K_{3} \square K_{4}\right)\right|$.
Proof. Let $V\left(K_{3} \square K_{4}\right)=\left\{x_{i, j}: 1 \leq i \leq 3,1 \leq j \leq 4\right\}$. First we decompose $K_{3} \square K_{4}$ into $10 S_{4}$ as follows:

$$
\begin{aligned}
& \left\{\left(x_{1,1} ; \boldsymbol{x}_{\mathbf{1}, \mathbf{4}}, \boldsymbol{x}_{\mathbf{1 , 2}}, x_{1,3}\right),\left(x_{1,2} ; \boldsymbol{x}_{\mathbf{3}, \mathbf{2}}, x_{1,3}, x_{1,4}\right)\right\}, \\
& \left\{\left(x_{1,4} ; x_{1,3}, \boldsymbol{x}_{\mathbf{2}, \mathbf{4}}, x_{3,4}\right),\left(x_{2,3} ; \boldsymbol{x}_{\mathbf{2 , 2}}, \boldsymbol{x}_{\mathbf{2}, \mathbf{4}}, x_{1,3}\right)\right\}, \\
& \left\{\left(x_{3,2} ; x_{2,2}, \boldsymbol{x}_{\mathbf{3 , 3}}, x_{3,4}\right),\left(x_{3,4} ; \boldsymbol{x}_{\mathbf{3 , 1}}, \boldsymbol{x}_{\mathbf{3} \mathbf{3}}, x_{2,4}\right)\right\}, \\
& \left\{\left(x_{2,2} ; x_{2,1}, x_{1,2}, \boldsymbol{x}_{\mathbf{2}, \mathbf{4}}\right),\left(x_{2,1} ; \boldsymbol{x}_{\mathbf{1 , 1}}^{\mathbf{1}} \boldsymbol{x}_{\mathbf{2} \mathbf{4}}, x_{2,3}\right)\right\}, \\
& \left\{\left(x_{3,1} ; x_{1,1}, x_{2,1}, x_{3,2}\right),\left(x_{3,3} ; x_{2,3}, x_{1,3}, x_{3,1}\right)\right\} .
\end{aligned}
$$

From the last $4 S_{4}$ we have either $\left\{3 S_{4}, 1 P_{4}\right\}$ or $\left\{1 S_{4}, 3 P_{4}\right\}$ or $\left\{4 P_{4}\right\}$ as follows:

$$
\left\{\begin{array}{ll}
x_{1,2} x_{2,2} x_{2,4} x_{2,1}, & \left(x_{2,1} ; x_{1,1}, x_{2,2}, x_{2,3}\right), \\
\left(x_{3,1} ; x_{1,1}, x_{2,1}, x_{3,2}\right), & \left(x_{3,3} ; x_{2,3}, x_{1,3}, x_{3,1}\right)
\end{array}\right\}
$$

or

$$
\left\{\begin{array}{ll}
\left(x_{2,2} ; x_{2,1}, x_{1,2}, x_{2,4}\right), & x_{1,3} x_{3,3} x_{2,3} x_{2,1}, \\
x_{3,2} x_{3,1} x_{1,1} x_{2,1}, & x_{3,3} x_{3,1} x_{2,1} x_{2,4}
\end{array}\right\}
$$

or

$$
\left\{\begin{array}{ll}
x_{1,3} x_{3,3} x_{2,3} x_{2,1}, & x_{3,2} x_{3,1} x_{1,1} x_{2,1} \\
x_{3,3} x_{3,1} x_{2,1} x_{2,2}, & x_{1,2} x_{2,2} x_{2,4} x_{2,1}
\end{array}\right\}
$$

By Remark 1.2, required number of paths and stars for remaining choices of p and q can be obtained from the paired stars given above.

Lemma 3.8. There exists a $(3 ; p, q)$-decomposition of $K_{4} \square K_{4}$, for every admissible pair (p, q) of nonnegative integers with $3(p+q)=\left|E\left(K_{4} \square K_{4}\right)\right|$.

Proof. Let $V\left(K_{4} \square K_{4}\right)=\left\{x_{i, j}: 1 \leq i \leq 4,1 \leq j \leq 4\right\}$. First we decompose $K_{4} \square K_{4}$ into $16 S_{4}$ as follows:

From the last $4 S_{4}$ we have either $\left\{3 S_{4}, 1 P_{4}\right\}$ or $\left\{1 S_{4}, 3 P_{4}\right\}$ or $\left\{4 P_{4}\right\}$ as follows:

$$
\left\{\begin{array}{ll}
\left(x_{3,2} ; x_{2,2}, x_{3,3}, x_{3,4}\right), & \left(x_{3,1} ; x_{2,1}, x_{4,1}, x_{3,2}\right), \\
\left(x_{3,4} ; x_{1,4}, x_{3,3}, x_{4,4}\right), & x_{2,3} x_{3,3} x_{3,1} x_{3,4}
\end{array}\right\}
$$

or

$$
\left\{\begin{array}{ll}
\left(x_{3,1} ; x_{2,1}, x_{3,4}, x_{3,3}\right), & x_{2,2} x_{3,2} x_{3,1} x_{4,1}, \\
x_{1,4} x_{3,4} x_{3,2} x_{3,3}, & x_{2,3} x_{3,3} x_{3,4} x_{4,4}
\end{array}\right\}
$$

or

$$
\left\{\begin{array}{ll}
x_{2,2} x_{3,2} x_{3,1} x_{4,1}, & x_{2,3} x_{3,3} x_{3,4} x_{4,4} \\
x_{3,4} x_{3,2} x_{3,3} x_{3,1}, & x_{1,4} x_{3,4} x_{3,1} x_{2,1}
\end{array}\right\} .
$$

By Remark 1.2, required number of paths and stars for remaining choices of p and q can be obtained from the paired stars given above.

Lemma 3.9. There exists a $(3 ; p, q)$-decomposition of $K_{3} \square K_{3}$, for every admissible pair (p, q) of nonnegative integers with $3(p+q)=\left|E\left(K_{3} \square K_{3}\right)\right|$ and $p \neq 0$.

Proof. Let $V\left(K_{3} \square K_{3}\right)=\left\{x_{i, j}: 1 \leq i \leq 3,1 \leq j \leq 3\right\}$. First we decompose $K_{3} \square K_{3}$ into $5 S_{4}$ and $1 P_{4}$ as follows:

$$
\begin{aligned}
& \left\{\left(x_{3,2} ; \boldsymbol{x}_{\mathbf{3 , \mathbf { 1 }}}, \boldsymbol{x}_{\mathbf{2}, \mathbf{2}}, x_{3,3}\right),\left(x_{1,2} ; \boldsymbol{x}_{\mathbf{2}, \mathbf{2}}, x_{3,2}, x_{1,3}\right)\right\}, \\
& \left\{\left(x_{2,1} ; \boldsymbol{x}_{\mathbf{1}, \mathbf{1}}, \boldsymbol{x}_{\mathbf{2 , 3}}, x_{2,2}\right),\left(x_{2,3} ; x_{1,3}, \boldsymbol{x}_{\mathbf{3}, \mathbf{3}}, x_{2,2}\right)\right\} \\
& \left\{\left(x_{1,1} ; x_{1,2}, x_{1,3}, x_{3,1}\right), x_{1,3} x_{3,3} x_{3,1} x_{2,1}\right\} .
\end{aligned}
$$

The graphs in the last bracket has a P_{4} decomposition as $\left\{x_{1,1} x_{1,3} x_{3,3} x_{3,1}\right.$, $\left.x_{2,1} x_{3,1} x_{1,1} x_{1,2}\right\}$. By Remark 1.2, required number of paths and stars for remaining choices of p and q can be obtained from the paired stars given above..

Lemma 3.10. There exists a $(3 ; p, q)$-decomposition of $K_{3} \square K_{2}$, for every admissible pair (p, q) of nonnegative integers with $3(p+q)=\left|E\left(K_{3} \square K_{2}\right)\right|$ and $p \neq 0$.
Proof. Let $V\left(K_{3} \square K_{2}\right)=\left\{x_{i, j}: 1 \leq i \leq 3,1 \leq j \leq 2\right\}$. We prove $K_{3} \square K_{2}$ has a (3; p, q)-decomposition as follows:

1. $p=1, q=2$. The required paths and stars are $x_{3,1} x_{2,1} x_{2,2} x_{1,2}$ and $\left(x_{1,1} ; x_{1,2}, x_{2,1}, x_{3,1}\right),\left(x_{3,2} ; x_{3,1}, x_{2,2}, x_{1,2}\right)$ respectively.
2. $p=2, q=1$. The required paths and stars are $x_{2,1} x_{2,2} x_{1,2} x_{3,2}$, $x_{2,2} x_{3,2} x_{3,1} x_{2,1}$ and $\left(x_{1,1} ; x_{1,2}, x_{2,1}, x_{3,1}\right)$ respectively.
3. $p=3, q=0$. The required paths are $x_{3,2} x_{3,1} x_{1,1} x_{2,1}, x_{1,1} x_{1,2} x_{3,2} x_{2,2}$, $x_{3,1} x_{2,1} x_{2,2} x_{1,2}$.

Lemma 3.11. There exists a $(3 ; p, q)$-decomposition of $K_{6} \square K_{2}$, for every admissible pair (p, q) of nonnegative integers with $3(p+q)=\left|E\left(K_{6} \square K_{2}\right)\right|$. Proof. Let $V\left(K_{6} \square K_{2}\right)=\left\{x_{i, j}: 1 \leq i \leq 6,1 \leq j \leq 2\right\}$. We can write

$$
\begin{aligned}
& K_{6} \square K_{2}=\left(K_{6} \backslash\left\{P_{1,1}, P_{1,2}\right\}\right) \oplus\left(K_{6} \backslash\left\{P_{2,1}, P_{2,2}\right\}\right) \\
& \oplus\left(P_{1,1} \oplus P_{1,2} \oplus P_{2,1} \oplus P_{2,2} \oplus 6 K_{2}\right),
\end{aligned}
$$

where $P_{1,1}=x_{3,1} x_{4,1} x_{6,1} x_{5,1}, P_{1,2}=x_{3,1} x_{5,1} x_{1,1} x_{6,1}, P_{2,1}=x_{3,2} x_{1,2} x_{2,2} x_{5,2}$, $P_{2,2}=x_{1,2} x_{6,2} x_{2,2} x_{3,2}$. Now, by Examples 1 and $2, K_{6} \backslash\left\{P_{1,1}, P_{1,2}\right\}$ and $K_{6} \backslash\left\{P_{2,1}, P_{2,2}\right\}$ have a $(3 ; p, q)$-decomposition. We can prove $\left(P_{1,1} \oplus P_{1,2} \oplus\right.$ $\left.P_{2,1} \oplus P_{2,2} \oplus 6 K_{2}\right)$ has a $(3 ; p, q)$-decomposition as in Lemma 3.1. Hence $K_{6} \square K_{2}$ has a $(3 ; p, q)$-decomposition.

Theorem 3.12. The graph $K_{m} \square K_{n}$ has a $(3 ; p, q)$-decomposition for every admissible pair (p, q) of nonnegative integers with $3(p+q)=E\left(K_{m} \square K_{n}\right)$ if and only if $m n(m+n-2) \equiv 0(\bmod 6)$.
Proof. Necessity. Since $K_{m} \square K_{n}$ is $(m+n-2)$-regular with $m n$ vertices, the necessity follows from Lemma 2.5.
Sufficiency. To construct the required decomposition, we consider the following two cases.

Case(1) $m, n \equiv 0$ or $1(\bmod 3)$.
We can write $K_{m} \square K_{n}=n K_{m} \oplus m K_{n}$. By Theorem 1.2, K_{m} and K_{n} have a $(3 ; p, q)$-decomposition for $m, n \geq 6$. For $m, n<6, K_{m} \square K_{n}$ has a $(3 ; p, q)$-decomposition, by Lemmas 3.7 to 3.9.
Without loss of generality, assume that $m<6$ and $n>6$. To construct the required decomposition, we consider the following four subcases.

Subcase 1(i) $m=3$ and $n=3 k$.
If $n=6 l$ and $l \in \mathbb{Z}^{+}$, then we can write $K_{m} \square K_{n}=l\left(K_{3} \square K_{6}\right) \oplus$ $\frac{3 l(l-1)}{2} K_{6,6}$. By Theorem 1.1 and Lemma 3.3, $K_{6,6}$ and $K_{3} \square K_{6}$ have a (3; p, q)-decomposition. Hence by Remark 1.1, $K_{m} \square K_{n}$ has a $(3 ; p, q)$ decomposition.
If $n=6 l+3$ and $l \in \mathbb{Z}^{+}$, then we can write $K_{m} \square K_{n}=l\left(K_{3} \square K_{6}\right) \oplus$ $\left(K_{3} \square K_{3}\right) \oplus \frac{3 l(l-1)}{2} K_{6,6} \oplus \quad 3 l K_{3,6} . \quad$ By Lemma 3.3 and Theorem 1.1, $K_{3} \square K_{6}, K_{6,6}$ and $K_{3,6}$ have a $(3 ; p, q)$-decomposition. Also by Lemma $3.9, K_{3} \square K_{3}$ has a $(3 ; p, q)$-decomposition with $p \neq 0$. Hence by Remark 1.1, $K_{m} \square K_{n}$ has a $(3 ; p, q)$-decomposition with $p \neq 0$. For $p=0$, consider $K_{m} \square K_{n}$ as $(l-1)\left(K_{3} \square K_{6}\right) \oplus\left(K_{3} \square K_{9}\right) \oplus$ $\frac{3(l-1)(l-2)}{2} K_{6,6} \oplus 3(l-1) K_{6,9}$. By Lemma 3.3 and Theorem 1.1, $K_{3} \square K_{6}, K_{6,6}$ and $K_{6,9}$ have a (3; p, q)-decomposition. So it is enough to prove that $K_{3} \square K_{9}$ possess a S_{4}-decomposition. Let $V\left(K_{3} \square K_{9}\right)=$ $\left\{x_{i, j}: 1 \leq i \leq 3,1 \leq j \leq 9\right\}$. Now,

$$
\left(x_{i, j} ; x_{i+1, j}, x_{i, j+1} x_{i, j+2}\right),
$$

where $i=1,2,3$ and $j=1,2, \cdots, 9$ and

$$
\begin{array}{ll}
\left(x_{i, 1} ; x_{i, 4}, x_{i, 5}, x_{i, 7}\right), & \left(x_{i, 2} ; x_{i, 6}, x_{i, 7}, x_{i, 8}\right), \\
\left(x_{i, 3} ; x_{i, 7}, x_{i, 8}, x_{i, 9}\right), & \left(x_{i, 4} ; x_{i, 7}, x_{i, 8}, x_{i, 9}\right), \\
\left(x_{i, 5} ; x_{i, 2}, x_{i, 8}, x_{i, 9}\right), & \left(x_{i, 6} ; x_{i, 1}, x_{i, 3}, x_{i, 9}\right),
\end{array}
$$

where $i=1,2,3$ and the subscripts in the first coordinate are taken modulo 3 with residues $\{1,2,3\}$ and the subscripts in the second coordinate are taken modulo 9 with residues $\{1,2, \cdots, 9\}$, gives a required S_{4}-decomposition of $K_{3} \square K_{9}$. Hence by Remark 1.1, $K_{m} \square K_{n}$ has a (3; p, q)-decomposition.

Subcase 1(ii) $m=3$ and $n=3 k+1$.
If $n=7$, then we can write $K_{m} \square K_{n}=\left(K_{3} \square K_{4}\right) \oplus\left(K_{3} \square K_{3}\right) \oplus$ $3 K_{3,4}$. By Lemma 3.7 and Theorem 1.1, $K_{3} \square K_{4}$ and $K_{3,4}$ have a $(3 ; p, q)$-decomposition. Also by Lemma $3.9, K_{3} \square K_{3}$ has a $(3 ; p, q)$ decomposition with $p \neq 0$. Hence by Remark 1.1, $K_{m} \square K_{n}$ has a (3; p, q)-decomposition with $p \neq 0$. For $p=0$ the S_{4}-decomposition of $K_{3} \square K_{7}$ with

$$
V\left(K_{3} \square K_{7}\right)=\left\{x_{i, j}: 1 \leq i \leq 3,1 \leq j \leq 7\right\}
$$

is given below.

$\left(x_{1,1} ; x_{1,2}, x_{2,1}, x_{3,1}\right)$,	$\left(x_{3,1} ; x_{2,1}, x_{3,1}, x_{3,2}\right)$,	$\left(x_{1,2} ; x_{2,2}, x_{1,3}, x_{1,4}\right)$,
$\left(x_{3,2} ; x_{2,2}, x_{1,2}, x_{3,3}\right)$,	$\left(x_{1,3} ; x_{1,4}, x_{2,3}, x_{3,3}\right)$,	$\left(x_{3,3} ; x_{2,3}, x_{3,4}, x_{3,5}\right)$,
$\left(x_{1,4} ; x_{2,4}, x_{1,1}, x_{1,5}\right)$,	$\left(x_{3,4} ; x_{3,5}, x_{1,4}, x_{2,4}\right)$,	$\left(x_{1,5} ; x_{1,2}, x_{1,6}, x_{2,5}\right)$,
$\left(x_{1,6} ; x_{1,2}, x_{1,4}, x_{2,6}\right)$,	$\left(x_{1,7} ; x_{1,2}, x_{1,6}, x_{2,7}\right)$,	$\left(x_{2,5} ; x_{2,6}, x_{2,7}, x_{3,5}\right)$,
$\left(x_{2,6} ; x_{2,4}, x_{2,7}, x_{3,6}\right)$,	$\left(x_{2,7} ; x_{2,3}, x_{2,4}, x_{3,7}\right)$,	$\left(x_{3,5} ; x_{3,2}, x_{3,6}, x_{1,5}\right)$,
$\left(x_{3,6} ; x_{3,3}, x_{3,4}, x_{1,6}\right)$,	$\left(x_{3,7} ; x_{3,5}, x_{3,6}, x_{1,7}\right)$,	$\left(x_{1,1} ; x_{1,5}, x_{1,6}, x_{1,7}\right)$,
$\left(x_{1,3} ; x_{1,1}, x_{1,5}, x_{1,6}\right)$,	$\left(x_{1,7} ; x_{1,3}, x_{1,4}, x_{1,5}\right)$,	$\left(x_{2,1} ; x_{2,3}, x_{2,6}, x_{2,7}\right)$,
$\left(x_{2,2} ; x_{2,1}, x_{2,6}, x_{2,7}\right)$,	$\left(x_{2,3} ; x_{2,2}, x_{2,4}, x_{2,6}\right)$,	$\left(x_{2,4} ; x_{2,1}, x_{2,2}, x_{2,5}\right)$,
$\left(x_{2,5} ; x_{2,1}, x_{2,2}, x_{2,3}\right)$,	$\left(x_{3,1} ; x_{3,4}, x_{3,5}, x_{3,6}\right)$,	$\left(x_{3,2} ; x_{3,4}, x_{3,6}, x_{3,7}\right)$,
$\left(x_{3,7} ; x_{3,1}, x_{3,3}, x_{3,4}\right)$.		

If $n=6 l+1$ and $l \geq 2$ is an integer, then we can write

$$
K_{m} \square K_{n}=\left(K_{3} \square K_{6(l-1)+3}\right) \oplus\left(K_{3} \square K_{4}\right) \oplus 3 K_{6(l-1)+3,4} .
$$

By Lemma 3.7 and Theorem 1.1, $K_{3} \square K_{4}$ and $K_{6(l-1)+3,4}$ have a $(3 ; p, q)$-decomposition. Also by Subcase $1(\mathrm{i}), K_{3} \square K_{6(l-1)+3}$ has a (3; p, q)-decomposition. Hence by Remark 1.1, $K_{m} \square K_{n}$ has a $(3 ; p, q)$ decomposition.
If $n=6 l+4$ and $l \geq 1$ is an integer, then we can write $K_{m} \square K_{n}=$ $\left(K_{3} \square K_{6 l}\right) \oplus\left(K_{3} \square K_{4}\right) \oplus 3 K_{6 l, 4}$. By Lemma 3.7 and Theorem 1.1, $K_{3} \square K_{4}$ and $K_{6 l, 4}$ have a $(3 ; p, q)$-decomposition. Also by Subcase 1(i), $K_{3} \square K_{6 l}$ has a $(3 ; p, q)$-decomposition. Hence by Remark 1.1, $K_{m} \square K_{n}$ has a (3; p, q)-decomposition.
Subcase 1(iii) $m=4$ and $n=3 k$.
We can write

$$
K_{m} \square K_{n}=k\left(K_{4} \square K_{3}\right) \oplus 2 k(k-1) K_{3,3} .
$$

By Theorem 1.1 and Lemma 3.7, $K_{3,3}$ and $K_{4} \square K_{3}$ have a $(3 ; p, q)$ decomposition. Hence by Remark 1.1, $K_{m} \square K_{n}$ has a (3; p, q)-decomposition.
Subcase 1(iv) $m=4$ and $n=3 k+1$.
We can write

$$
\begin{aligned}
& K_{m} \square K_{n}=(k-1)\left(K_{4} \square K_{3}\right) \oplus\left(K_{4} \square K_{4}\right) \\
& \oplus 2(k-1)(k-2) K_{3,3} \oplus 4(k-1) K_{3,4}
\end{aligned}
$$

By Theorem 1.1, $K_{3,3}$ and $K_{3,4}$ have a $(3 ; p, q)$-decomposition. Also by Lemmas 3.7 and $3.8, K_{4} \square K_{3}$ and $K_{4} \square K_{4}$ have a ($3 ; p, q$)-decomposition. Hence by Remark 1.1, $K_{m} \square K_{n}$ has a ($3 ; p, q$)-decomposition.

Case(2) $m \equiv 0(\bmod 3), n \equiv 2(\bmod 3)$ 。

We can write

$$
K_{m} \square K_{n}=n K_{m} \oplus m K_{n} .
$$

To construct the required decomposition, we consider the following four subcases.
Subcase $2(i) m \equiv 0(\bmod 6), n \equiv 5(\bmod 6)$.
Let $m=6 k, k \in \mathbb{Z}^{+}$and $n=6 l+5, l \geq 0$ be an integer. We can write

$$
\begin{aligned}
& K_{m} \square K_{n}=\left(K_{6 k} \square K_{6 l}\right) \oplus\left(K_{6 k} \square K_{5}\right) \oplus 6 k K_{6 l, 5}= \\
& \quad\left(K_{6 k} \square K_{6 l}\right) \oplus k\left(K_{6} \square K_{5}\right) \oplus \frac{5 k(k-1)}{2} K_{6,6} \oplus 6 k K_{6 l, 5} .
\end{aligned}
$$

By Lemma 3.1 and Theorem 1.1, $K_{6} \square K_{5}, K_{6,6}$ and $K_{6 l, 5}$ have a (3; p,q)-decomposition. Also by Case $1, K_{6 k} \square K_{6 l}$ has a $(3 ; p, q)$-decomposition. Hence by Remark 1.1, $K_{m} \square K_{n}$ has a ($3 ; p, q$)-decomposition.

Subcase $2($ ii) $m \equiv 0(\bmod 6), n \equiv 2(\bmod 6)$.
When $m=6 k, k \in \mathbb{Z}^{+}$and $n=2, K_{m} \square K_{n}=k\left(K_{6} \square K_{2}\right) \oplus k(k-$ 1) $K_{6,6}$. By Theorem 1.1 and Lemma $3.11, K_{m} \square K_{n}$ has a $(3 ; p, q)$ decomposition. When $n>2$, let $m=6 k, n=6 l+2, k, l \in \mathbb{Z}^{+}$. We can write

$$
\begin{aligned}
& K_{m} \square K_{n}=\left(K_{6 k} \square K_{6(l-1)}\right) \oplus\left(K_{6 k} \square K_{8}\right) \oplus 6 k K_{6(l-1), 8} \\
= & \left(K_{6 k} \square K_{6(l-1)}\right) \oplus k\left(K_{6} \square K_{8}\right) \oplus 4 k(k-1) K_{6,6} \oplus 6 k K_{6(l-1), 8}
\end{aligned}
$$

By Theorem 1.1 and Lemma 3.6, $K_{6,6}, K_{6(l-1), 8}$ and $K_{6} \square K_{8}$ have a $(3 ; p, q)$-decomposition. Also by Case $1, K_{6 k} \square K_{6(l-1)}$ has a $(3 ; p, q)$ decomposition. Hence by Remark 1.1, $K_{m} \square K_{n}$ has a (3; p, q)-decomposition.

Subcase $2($ iii) $m \equiv 3(\bmod 6), n \equiv 5(\bmod 6)$.
Let $m=6 k+3$ and $n=6 l+5, k, l \geq 0$ be integers. We can write

$$
\begin{aligned}
K_{m} \square K_{n} & =\left(K_{6 k+3} \square K_{6 l}\right) \oplus\left(K_{6 k+3} \square K_{5}\right) \oplus(6 k+3) K_{6 l, 5} \\
& =\left(K_{6 k+3} \square K_{6 l}\right) \oplus k\left(K_{6} \square K_{5}\right) \oplus\left(K_{3} \square K_{5}\right) \\
& \oplus \frac{5 k(k-1)}{2} K_{6,6} \oplus 5 k K_{3,6} \oplus(6 k+3) K_{6 l, 5} .
\end{aligned}
$$

By Lemmas 3.1, 3.2, 3.3 and Theorem 1.1, $K_{6} \square K_{5}, K_{3} \square K_{6}, K_{3} \square K_{5}$, $K_{6,6}, K_{3,6}$ and $K_{6 l, 5}$ have a $(3 ; p, q)$-decomposition. Also by Case $1, K_{6 k+3} \square K_{6 l}$ has a $(3 ; p, q)$-decomposition. Hence by Remark 1.1, $K_{m} \square K_{n}$ has a ($3 ; p, q$)-decomposition.

Subcase 2(iv) $m \equiv 3(\bmod 6), n \equiv 2(\bmod 6)$.
When $m=3$ and $n=2, K_{m} \square K_{n}$ has a ($3 ; p, q$)-decomposition, by Lemma 3.10.
When $m=6 k+3$ with $k \in \mathbb{Z}^{+}$and $n=2, K_{m} \square K_{n}=\left(K_{6 k} \square K_{2}\right) \oplus$ $\left(K_{3} \square K_{2}\right) \oplus 2 K_{6 k, 3}$. By Theorem 1.1 and Subcase 2(ii), $K_{6 k, 3}$ and $K_{6 k} \square K_{2}$ have a ($3 ; p, q$)-decomposition. Also by Lemma 3.11, $K_{3} \square K_{2}$ has a $(3 ; p, q)$-decomposition with $p \neq 0$. Hence by Remark 1.1, $K_{m} \square K_{n}$ has a $(3 ; p, q)$-decomposition with $p \neq 0$. For $p=0$, consider $K_{m} \square K_{n}$ as $\left(K_{6(k-1)} \square K_{2}\right) \oplus\left(K_{9} \square K_{2}\right) \oplus 2 K_{(6 k-1), 3}$. By Theorem 1.1 and Subcase 2(ii), $K_{6(k-1), 3}$ and $K_{6(k-1)} \square K_{2}$ have a (3; p, q)-decomposition. So it is enough to prove that $K_{9} \square K_{2}\left(\cong K_{2} \square K_{9}\right)$ has a $S_{4^{-}}$ decomposition. Consider $K_{2} \square K_{9}$ as $9 K_{2} \oplus 2 K_{9}=\left(9 K_{2} \oplus K_{9}\right) \oplus K_{9}$. Now, K_{9} has a S_{4}-decomposition, by Theorem 1.2 with $p=0$. Let $V\left(K_{2} \square K_{9}\right)=\left\{x_{i, j}: 1 \leq i \leq 2,1 \leq j \leq 9\right\}$. Now,

$$
\begin{array}{ll}
\left(x_{1,1} ; x_{1,4}, x_{1,5}, x_{1,7}\right), & \left(x_{1,2} ; x_{1,6}, x_{1,7}, x_{1,8}\right), \\
\left(x_{1,3} ; x_{1,7}, x_{1,8}, x_{1,9}\right), & \left(x_{1,4} ; x_{1,7}, x_{1,8}, x_{1,9}\right), \\
\left(x_{1,5} ; x_{1,2}, x_{1,8}, x_{1,9}\right), & \left(x_{1,6} ; x_{1,1}, x_{1,3}, x_{1,9}\right)
\end{array}
$$

and $\left(x_{1, j} ; x_{2, j}, x_{1, j+1} x_{1, j+2}\right)$, for $j=1,2, \cdots, 9$, where the subscripts in the second coordinate are taken modulo 9 with residues $\{1,2, \cdots, 9\}$, gives the S_{4}-decomposition of $9 K_{2} \oplus K_{9}$. Hence $K_{m} \square K_{n}$ has a (3; p, q)-decomposition.
When $n>2$, let $m=6 k+3$ and $n=6 l+2$, where $k \geq 0, l>0$ are integers. We can write

$$
\begin{aligned}
& K_{m} \square K_{n}=\left(K_{6 k} \square K_{6 l+2}\right) \oplus\left(K_{3} \square K_{(6 l+2)}\right) \oplus(6 l+2) K_{3,6 k} \\
&=\left(K_{6 k} \square K_{6 l+2}\right) \oplus\left(K_{3} \square K_{6(l-1)}\right) \oplus\left(K_{3} \square K_{8}\right) \\
& \oplus 3 K_{6(l-1), 8} \oplus(6 l+2) K_{3,6 k} .
\end{aligned}
$$

By Lemma 3.5 and Theorem 1.1, $K_{3} \square K_{8}, K_{6(l-1), 8}$ and $K_{3,6 k}$ have a (3; p, q)-decomposition. Also by Case 1 and Subcase 2(ii), $K_{3} \square K_{6(l-1)}$ and $K_{6 k} \square K_{6 l+2}$ have a ($3 ; p, q$)-decomposition. Hence by Remark 1.1, $K_{m} \square K_{n}$ has a (3; p, q)-decomposition.

$4 \quad(3 ; p, q)$-decomposition of $\boldsymbol{K}_{\boldsymbol{m}} \times \boldsymbol{K}_{\boldsymbol{n}}$

In this section we investigate the existence of $(3 ; p, q)$-decomposition of tensor product of complete graphs.

Lemma 4.1. Let G be an S_{4}-decomposible graph and $p, q \geq 0$ be integers with $3(p+q)=\left|E\left(G \times K_{n}\right)\right|$ and $p \neq 1$. Then $G \times K_{n}$ has a $(3 ; p, q)$-decomposition for all odd n and every admissible pair (p, q).

Proof. Let $V\left(G \times K_{n}\right)=\left\{x_{g, i}: g \in V(G)\right.$ and $\left.1 \leq i \leq n\right\}$. Since G is $S_{4^{-}}$ decomposible graph, for each $\operatorname{star}(a ; u, v, w)$ in G, we have the following pair of stars in $G \times K_{n}$:

- for each $j \in\{1,3, \cdots, n-2\}$

$$
\left\{\left(x_{a, j} ; x_{u, i}, \boldsymbol{x}_{\boldsymbol{v}, \boldsymbol{i}}, \boldsymbol{x}_{\boldsymbol{w}, \boldsymbol{i}}\right),\left(x_{a, j+1} ; x_{u, i}, x_{v, i}, \boldsymbol{x}_{\boldsymbol{w}, \boldsymbol{i}}\right)\right\}
$$

where $1 \leq i \leq n$ and $i \neq j, j+1$;

- for $1 \leq i \leq n-1$,

$$
\left\{\left(x_{a, n} ; x_{u, i-1}, \boldsymbol{x}_{\boldsymbol{v}, \boldsymbol{i}-\mathbf{1}}, \boldsymbol{x}_{\boldsymbol{w}, \boldsymbol{i}-\mathbf{1}}\right),\left(x_{a, i} ; x_{u, i-1}, \boldsymbol{x}_{\boldsymbol{v}, \boldsymbol{i}-\mathbf{1}}, \boldsymbol{x}_{\boldsymbol{w}, \boldsymbol{i}-\mathbf{1}}\right)\right\}
$$

if i is even and

$$
\left\{\left(x_{a, n} ; x_{u, i+1}, \boldsymbol{x}_{\boldsymbol{v}, \boldsymbol{i}+\mathbf{1}}, \boldsymbol{x}_{\boldsymbol{w}, \boldsymbol{i + 1}}\right),\left(x_{a, i} ; x_{u, i+1}, \boldsymbol{x}_{\boldsymbol{v}, \boldsymbol{i + 1}}, \boldsymbol{x}_{\boldsymbol{w}, \boldsymbol{i}+\mathbf{1}}\right)\right\},
$$

if i is odd.
Then by applying remark 1.2 to the pairs of stars mentioned above we obtained all possible even number of paths and stars of $G \times K_{n}$. Now, $\operatorname{consider}\left\{\left(x_{a, 1} ; x_{u, 2}, x_{v, 2}, x_{w, 2}\right),\left(x_{a, 1} ; x_{u, 3}, x_{v, 3}, x_{w, 3}\right),\left(x_{a, 2} ; x_{u, 3}, x_{v, 3}, x_{w, 3}\right)\right\}$ and decompose it into $3 P_{4}$ as given below. $\left\{x_{u, 2} x_{a, 1} x_{u, 3} x_{a, 2}, x_{v, 2} x_{a, 1} x_{v, 3} x_{a, 2}\right.$, $\left.x_{w, 2} x_{a, 1} x_{w, 3} x_{a, 2}\right\}$. The remaining number of paths and stars can be obtained from the remaining pairs of stars given above except when $p=1$.

Lemma 4.2. There exists a (3; $p, q)$-decomposition of $K_{3} \times K_{3}$, for every admissible pair (p, q) of nonnegative integers with $3(p+q)=\left|E\left(K_{3} \times K_{3}\right)\right|$.
Proof. Let $V\left(K_{3} \times K_{3}\right)=\left\{x_{i, j}: 1 \leq i \leq 3,1 \leq j \leq 3\right\}$. Now, $K_{3} \times K_{3}$ has a (3; p, q)-decomposition as follows:

1. $p=0, q=6$. The required stars are
$\left(x_{1,1} ; x_{2,2}, x_{2,3}, x_{3,3}\right),\left(x_{1,2} ; x_{2,1}, x_{2,3}, x_{3,1}\right),\left(x_{1,3} ; x_{2,1}, x_{2,2}, x_{3,2}\right)$, $\left(x_{3,1} ; x_{1,3}, x_{2,2}, x_{2,3}\right),\left(x_{3,2} ; x_{1,1}, x_{2,1}, x_{2,3}\right),\left(x_{3,3} ; x_{1,2}, x_{2,1}, x_{2,2}\right)$.
2. $p=1, q=5$. The required path and stars are $x_{2,2} x_{1,1} x_{2,3} x_{1,2}$ and $\left(x_{2,1} ; x_{1,2}, x_{3,2}, x_{3,3}\right),\left(x_{1,3} ; x_{2,1}, x_{2,2}, x_{3,1}\right)$, $\left(x_{3,1} ; x_{1,2}, x_{2,2}, x_{2,3}\right),\left(x_{3,2} ; x_{1,1}, x_{1,3}, x_{2,3}\right),\left(x_{3,3} ; x_{1,2}, x_{1,1}, x_{2,2}\right)$ respectively.
3. $p=2, q=4$. The required paths and stars are
$x_{3,3} x_{1,1} x_{2,3} x_{1,2}, x_{1,1} x_{2,2} x_{3,3} x_{1,2}$ and ($\left.x_{2,1} ; x_{1,2}, x_{3,2}, x_{3,3}\right)$,
$\left(x_{1,3} ; x_{2,1}, x_{2,2}, x_{3,1}\right),\left(x_{3,1} ; x_{1,2}, x_{2,2}, x_{2,3}\right),\left(x_{3,2} ; x_{1,1}, x_{1,3}, x_{2,3}\right)$ respectively.
4. $p=3, q=3$. The required paths and stars are
$x_{3,3} x_{1,1} x_{2,3} x_{1,2}, x_{2,2} x_{3,3} x_{1,2} x_{3,1}, x_{2,3} x_{3,1} x_{2,2} x_{1,1}$ and $\left(x_{2,1} ; x_{1,2}, x_{3,2}, x_{3,3}\right),\left(x_{1,3} ; x_{2,1}, x_{2,2}, x_{3,1}\right),\left(x_{3,2} ; x_{1,1}, x_{1,3}, x_{2,3}\right)$ respectively.
5. $p=4, q=2$. The required paths and stars are
$x_{3,3} x_{1,1} x_{2,3} x_{1,2}, x_{2,2} x_{3,3} x_{1,2} x_{3,1}, x_{3,1} x_{2,2} x_{1,1} x_{3,2}$,
$x_{3,1} x_{2,3} x_{3,2} x_{1,3}$ and $\left(x_{2,1} ; x_{1,2}, x_{3,2}, x_{3,3}\right),\left(x_{1,3} ; x_{2,1}, x_{2,2}, x_{3,1}\right)$
respectively.
6. $p=5, q=1$. The required paths and star are
$x_{3,3} x_{1,1} x_{2,3} x_{1,2}, x_{2,2} x_{3,3} x_{1,2} x_{3,1}, x_{3,1} x_{2,2} x_{1,1} x_{3,2}$,
$x_{2,3} x_{3,2} x_{1,3} x_{2,2} x_{2,1} x_{1,3} x_{3,1} x_{2,3}$ and $\left(x_{2,1} ; x_{1,2}, x_{3,2}, x_{3,3}\right)$
respectively.
7. $p=6, q=0$. The required paths are
$x_{1,1} x_{2,3} x_{1,2} x_{2,1}, x_{3,2} x_{2,1} x_{3,3} x_{1,1}, x_{2,2} x_{3,3} x_{1,2} x_{3,1}$,
$x_{3,1} x_{2,2} x_{1,1} x_{3,2}, x_{2,3} x_{3,2} x_{1,3} x_{2,2} x_{2,1} x_{1,3} x_{3,1} x_{2,3}$.

Lemma 4.3. There exists a (3; $p, q)$-decomposition of $K_{3} \times K_{4}$, for every admissible pair (p, q) of nonnegative integers with $3(p+q)=\left|E\left(K_{3} \times K_{4}\right)\right|$.

Proof. Let $V\left(K_{3} \times K_{4}\right)=\left\{x_{i, j}: 1 \leq i \leq 3,1 \leq j \leq 4\right\}$. First we decompose $K_{3} \times K_{4}$ into $12 S_{4}$ as follows:

$$
\begin{aligned}
& \left\{\left(x_{1,1} ; \boldsymbol{x}_{\mathbf{2 , 2}}, \boldsymbol{x}_{\mathbf{2 , 3}}, x_{2,4}\right),\left(x_{1,2} ; x_{2,1}, \boldsymbol{x}_{\mathbf{2 , 3}}, x_{2,4}\right)\right\}, \\
& \left\{\left(x_{2,1} ; \boldsymbol{x}_{\mathbf{3}, \mathbf{2}}, \boldsymbol{x}_{\mathbf{3}, \mathbf{3}}, x_{3,4}\right),\left(x_{2,2} ; x_{3,1}, \boldsymbol{x}_{\mathbf{3}, \mathbf{3}}, x_{3,4}\right)\right\} \text {, } \\
& \left\{\left(x_{2,3} ; x_{3,1}, \boldsymbol{x}_{\boldsymbol{3}, \mathbf{2}}, \boldsymbol{x}_{\boldsymbol{3}, \mathbf{4}}\right),\left(x_{2,4} ; x_{3,1}, \boldsymbol{x}_{\boldsymbol{3}, \mathbf{2}}, x_{3,3}\right)\right\}, \\
& \left\{\left(x_{3,3} ; x_{1,1}, \boldsymbol{x}_{\mathbf{1 , 2}}, \boldsymbol{x}_{\mathbf{1}, \mathbf{4}}\right),\left(x_{3,4} ; x_{1,1}, \boldsymbol{x}_{\mathbf{1 , 2}}, x_{1,3}\right)\right\}, \\
& \left\{\left(x_{3,1} ; \boldsymbol{x}_{\mathbf{1}, \mathbf{2}}, \boldsymbol{x}_{\mathbf{1 , 3}}, x_{1,4}\right),\left(x_{3,2} ; x_{1,1}, \boldsymbol{x}_{\mathbf{1 , 3}}, x_{1,4}\right)\right\} \text {, } \\
& \left\{\left(x_{1,3} ; x_{2,1}, \boldsymbol{x}_{\mathbf{2}, \mathbf{2}}, \boldsymbol{x}_{\mathbf{2}, \mathbf{4}}\right),\left(x_{1,4} ; x_{2,1}, \boldsymbol{x}_{\mathbf{2}, \mathbf{2}}, x_{2,3}\right)\right\} .
\end{aligned}
$$

Now, the last $3 S_{4}$ can be decomposed into $3 P_{4}$ as follows:

$$
\left\{x_{1,1} x_{3,2} x_{1,3} x_{2,4}, x_{3,2} x_{1,4} x_{2,1} x_{1,3}, x_{1,3} x_{2,2} x_{1,4} x_{2,3}\right\}
$$

Decomposition for the remaining choices of $p \neq 1$ can be obtained from the paired stars given above, by Remark 1.2. When $p=1$, the required path and stars are

$$
\begin{array}{lll}
\left(x_{1,1} ; x_{3,3}, x_{2,3}, x_{3,2}\right), & \left(x_{2,4} ; x_{1,1}, x_{1,2}, x_{3,3}\right), & \left(x_{2,1} ; x_{1,2}, x_{1,3}, x_{1,4}\right), \\
\left(x_{2,3} ; x_{1,2}, x_{1,4}, x_{3,2}\right), & \left(x_{2,1} ; x_{3,2}, x_{3,3}, x_{3,4}\right), & \left(x_{3,1} ; x_{2,2}, x_{2,3}, x_{2,4}\right), \\
\left(x_{3,1} ; x_{1,2}, x_{1,3}, x_{1,4}\right), & \left(x_{3,2} ; x_{1,3}, x_{1,4}, x_{2,4}\right), & \left(x_{3,3} ; x_{2,2}, x_{1,2}, x_{1,4}\right), \\
\left(x_{1,3} ; x_{2,2}, x_{3,4}, x_{2,4}\right), & \left(x_{3,4} ; x_{2,2}, x_{1,2}, x_{2,3}\right), & x_{3,4} x_{1,1} x_{2,2} x_{1,4}
\end{array}
$$

Lemma 4.4. There exists a (3; $p, q)$-decomposition of $K_{3} \times K_{5}$, for every admissible pair (p, q) of nonnegative integers with $3(p+q)=\left|E\left(K_{3} \times K_{5}\right)\right|$.
Proof. Let $V\left(K_{3} \times K_{5}\right)=\left\{x_{i, j}: 1 \leq i \leq 3,1 \leq j \leq 5\right\}$. First we decompose $K_{3} \times K_{5}$ into $20 S_{4}$ as follows:

$$
\begin{aligned}
& \left\{\left(x_{1,1} ; x_{2,2}, \boldsymbol{x}_{\mathbf{2}, \mathbf{3}}, \boldsymbol{x}_{\mathbf{2}, \mathbf{4}}\right),\left(x_{1,3} ; x_{2,1}, x_{2,2}, \boldsymbol{x}_{\mathbf{2}, \mathbf{4}}\right)\right\}, \\
& \left\{\left(x_{1,1} ; x_{3,2}, \boldsymbol{x}_{\boldsymbol{3}, \mathbf{3}}, \boldsymbol{x}_{\boldsymbol{3}, \mathbf{4}}\right),\left(x_{1,3} ; x_{3,1}, x_{3,2}, \boldsymbol{x}_{\boldsymbol{3}, \mathbf{4}}\right)\right\}, \\
& \left\{\left(x_{1,4} ; x_{2,1}, \boldsymbol{x}_{\mathbf{2 , 5}}, \boldsymbol{x}_{\mathbf{2}, \mathbf{2}}\right),\left(x_{1,5} ; x_{2,1}, \boldsymbol{x}_{\mathbf{2 , 2}}, x_{2,4}\right)\right\} \text {, } \\
& \left\{\left(x_{1,4} ; x_{3,1}, \boldsymbol{x}_{\mathbf{3}, \mathbf{2}}, \boldsymbol{x}_{\mathbf{3}, \mathbf{5}}\right),\left(x_{1,5} ; x_{3,1}, \boldsymbol{x}_{\mathbf{3}, \mathbf{2}}, x_{3,4}\right)\right\}, \\
& \left\{\left(x_{2,3} ; x_{1,4}, \boldsymbol{x}_{\mathbf{1}, \mathbf{5}}, \boldsymbol{x}_{\mathbf{3}, \mathbf{1}}\right),\left(x_{3,3} ; x_{1,4}, \boldsymbol{x}_{\mathbf{1}, \mathbf{5}}, x_{2,1}\right)\right\}, \\
& \left\{\left(x_{2,5} ; \boldsymbol{x}_{\mathbf{1}, \mathbf{1}}, \boldsymbol{x}_{\mathbf{1 , 2}}, x_{1,3}\right),\left(x_{3,5} ; x_{1,1}, \boldsymbol{x}_{\mathbf{1 , 2}}, x_{1,3}\right)\right\}, \\
& \left\{\left(x_{2,1} ; \boldsymbol{x}_{\mathbf{3}, \mathbf{2}}, \boldsymbol{x}_{\mathbf{3}, \mathbf{4}}, x_{3,5}\right),\left(x_{2,2} ; x_{3,1}, \boldsymbol{x}_{\mathbf{3}, \mathbf{4}}, x_{3,5}\right)\right\}, \\
& \left\{\left(x_{2,4} ; x_{3,1}, \boldsymbol{x}_{\boldsymbol{3}, \mathbf{2}}, \boldsymbol{x}_{\mathbf{3}, \mathbf{5}}\right),\left(x_{2,5} ; x_{3,1}, \boldsymbol{x}_{\mathbf{3}, \mathbf{2}}, x_{3,4}\right)\right\}, \\
& \left\{\left(x_{2,3} ; x_{3,2}, x_{3,4}, x_{3,5}\right),\left(x_{3,3} ; x_{2,2}, x_{2,4}, x_{2,5}\right)\right\} \text {, } \\
& \left\{\left(x_{1,2} ; x_{2,1}, x_{2,3}, x_{2,4}\right),\left(x_{1,2} ; x_{3,1}, x_{3,3}, x_{3,4}\right)\right\} .
\end{aligned}
$$

Now, the last $4 S_{4}$ can be decomposed into either $\left\{1 P_{4}, 3 S_{4}\right\}$ or $\left\{2 P_{4}, 2 S_{4}\right\}$ or $\left\{3 P_{4}, 1 S_{4}\right\}$ or $\left\{4 P_{4}\right\}$ as follows:

$$
\left\{\begin{array}{ll}
x_{3,3} x_{1,2} x_{3,4} x_{2,3}, & \left(x_{2,3} ; x_{3,2}, x_{1,2}, x_{3,5}\right), \\
\left(x_{3,3} ; x_{2,2}, x_{2,4}, x_{2,5}\right), & \left(x_{1,2} ; x_{2,1}, x_{3,1}, x_{2,4}\right)
\end{array}\right\}
$$

or

$$
\left\{\begin{array}{ll}
x_{2,2} x_{3,3} x_{1,2} x_{3,1}, & x_{2,5} x_{3,3} x_{2,4} x_{1,2}, \\
\left(x_{2,3} ; x_{3,2}, x_{3,4}, x_{3,5}\right), & \left(x_{1,2} ; x_{2,1}, x_{2,3}, x_{3,4}\right)
\end{array}\right\}
$$

or

$$
\left\{\begin{array}{ll}
x_{2,2} x_{3,3} x_{1,2} x_{3,1}, & x_{2,5} x_{3,3} x_{2,4} x_{1,2} \\
x_{2,3} x_{3,4} x_{1,2} x_{2,1}, & \left(x_{2,3} ; x_{3,2}, x_{1,2}, x_{3,5}\right)
\end{array}\right\}
$$

or

$$
\left\{\begin{array}{ll}
x_{2,2} x_{3,3} x_{1,2} x_{3,1}, & x_{2,5} x_{3,3} x_{2,4} x_{1,2}, \\
x_{3,2} x_{2,3} x_{3,4} x_{1,2}, & x_{2,1} x_{1,2} x_{2,3} x_{3,5}
\end{array}\right\} .
$$

By Remark 1.2, required number of paths and stars for the remaining choices of p and q can be obtained from the paired stars given above.

Lemma 4.5. There exists a (3; p,q)-decomposition of $K_{3} \times K_{6}$, for every admissible pair (p, q) of nonnegative integers with $3(p+q)=\left|E\left(K_{3} \times K_{6}\right)\right|$.
Proof. We can write $K_{3} \times K_{6}=\left(K_{3} \times K_{3}\right) \oplus\left(K_{3} \times K_{3}\right) \oplus\left(K_{3} \times K_{3,3}\right)$. By Theorem 1.1 and Lemma 4.1, $K_{3} \times K_{3,3}\left(\cong K_{3,3} \times K_{3}\right)$ has a (3; p, q)-decomposition with $p \neq 1$. Also, by Lemma 4.2, we have a $(3 ; p, q)$-decomposition of $K_{3} \times K_{3}$. Hence by Remark 1.1, the graph $K_{3} \times K_{6}$ has the desired decomposition.

Lemma 4.6. There exists a $(3 ; p, q)$-decomposition of $K_{3} \times K_{8}$, for every admissible pair (p, q) of nonnegative integers with $3(p+q)=\left|E\left(K_{3} \times K_{8}\right)\right|$.
Proof. We know that $K_{3} \times K_{8}=K_{8,8,8} \backslash E\left(8 K_{3}\right)$. Let $V\left(K_{8,8,8}\right)=X(=$ $\left.\left\{x_{1, j}: 1 \leq j \leq 8\right\}\right) \cup Y\left(=\left\{x_{2, j}: 1 \leq j \leq 8\right\}\right) \cup Z\left(=\left\{x_{3, j}: 1 \leq j \leq 8\right\}\right)$ and $X=X_{1} \cup X_{2}, Y=Y_{1} \cup Y_{2}, Z=Z_{1} \cup Z_{2}$, where $X_{1}=\left\{x_{1, j}: 1 \leq j \leq 4\right\}, X_{2}=$ $\left\{x_{1, j}: 5 \leq j \leq 8\right\}, Y_{1}=\left\{x_{2, j}: 1 \leq j \leq 4\right\}, Y_{2}=\left\{x_{2, j}: 5 \leq j \leq 8\right\}, Z_{1}=$ $\left\{x_{3, j}: 1 \leq j \leq 4\right\}, Z_{2}=\left\{x_{3, j}: 5 \leq j \leq 8\right\}$. We can view $K_{3} \times K_{8}$ as $\left(K_{X_{1}, Y_{1}, Z_{1}} \backslash E\left(4 K_{3}\right)\right) \oplus\left(K_{X_{2}, Y_{2}, Z_{2}} \backslash E\left(4 K_{3}\right)\right) \oplus K_{X_{1}, Y_{2}} \oplus K_{Y_{2}, Z_{1}} \oplus$ $K_{Z_{1}, X_{2}} \oplus K_{X_{2}, Y_{1}} \oplus K_{Y_{1}, Z_{2}} \oplus K_{Z_{2}, X_{1}}$. Hence $K_{3} \times K_{8}=G_{1} \oplus G_{2}$, where $G_{1} \cong G_{2} \cong\left(K_{4,4,4} \backslash E\left(4 K_{3}\right) \oplus K_{X_{1}, Y_{2}} \oplus K_{Y_{2}, Z_{1}} \oplus K_{Z_{1}, X_{2}}\right)$. Now, $K_{4,4,4} \backslash E\left(4 K_{3}\right)=K_{3} \times K_{4}$ has a $(3 ; p, q)$-decomposition, by Lemma 4.3. Further $K_{X_{1}, Y_{2}} \oplus K_{Y_{2}, Z_{1}} \oplus K_{Z_{1}, X_{2}}$ can be decomposed into $16 S_{4}$ as follows:

$$
\begin{aligned}
& \left\{\left(x_{1,3} ; \boldsymbol{x}_{\mathbf{2 , 5}}, \boldsymbol{x}_{\mathbf{2 , 6}}, x_{2,8}\right),\left(x_{3,1} ; \boldsymbol{x}_{\mathbf{2 , 6}}, x_{2,7}, x_{2,8}\right)\right\}, \\
& \left\{\left(x_{2,8} ; x_{1,2}, \boldsymbol{x}_{\mathbf{1}, \mathbf{4}}, \boldsymbol{x}_{\mathbf{3}, \mathbf{2}}\right),\left(x_{2,5} ; x_{3,1}, x_{1,2}, \boldsymbol{x}_{\mathbf{1}, \mathbf{4}}\right)\right\} \text {, } \\
& \left\{\left(x_{2,5} ; \boldsymbol{x}_{\mathbf{1}, \mathbf{1}}, \boldsymbol{x}_{\mathbf{3}, \mathbf{2}}, x_{3,3}\right),\left(x_{1,5} ; x_{3,1}, \boldsymbol{x}_{\mathbf{3}, \mathbf{2}}, x_{3,3}\right)\right\}, \\
& \left\{\left(x_{2,7} ; \boldsymbol{x}_{\mathbf{1}, \mathbf{3}}, \boldsymbol{x}_{\mathbf{3}, \mathbf{3}}, x_{1,1}\right),\left(x_{2,8} ; x_{3,4}, \boldsymbol{x}_{\mathbf{3}, \mathbf{3}}, x_{1,1}\right)\right\}, \\
& \left\{\left(x_{3,1} ; \boldsymbol{x}_{\mathbf{1}, \mathbf{6}}, \boldsymbol{x}_{\mathbf{1 , 7}}, x_{1,8}\right),\left(x_{3,2} ; x_{1,6}, \boldsymbol{x}_{\mathbf{1}, \boldsymbol{7}}, x_{1,8}\right)\right\}, \\
& \left\{\left(x_{3,3} ; \boldsymbol{x}_{\mathbf{1}, \mathbf{6}}, \boldsymbol{x}_{\mathbf{1}, \boldsymbol{7}}, x_{1,8}\right),\left(x_{3,4} ; x_{1,6}, \boldsymbol{x}_{\mathbf{1}, \boldsymbol{7}}, x_{1,8}\right)\right\}, \\
& \left\{\left(x_{2,6} ; x_{1,2}, \boldsymbol{x}_{\mathbf{3 , 2}}, \boldsymbol{x}_{\mathbf{3}, \mathbf{3}}\right),\left(x_{2,7} ; x_{1,2}, x_{1,4}, \boldsymbol{x}_{\mathbf{3}, \mathbf{2}}\right)\right\}, \\
& \left\{\left(x_{3,4} ; x_{2,7}, x_{2,5}, x_{1,5}\right),\left(x_{2,6} ; x_{1,1}, x_{1,4}, x_{3,4}\right)\right\} .
\end{aligned}
$$

From the last $4 S_{4}$ we have either $\left\{1 P_{4}, 3 S_{4}\right\}$ or $\left\{3 P_{4}, 1 S_{4}\right\}$ or $\left\{4 P_{4}\right\}$ as follows:

$$
\left\{\begin{array}{ll}
x_{2,7} x_{1,4} x_{2,6} x_{1,1}, & \left(x_{2,6} ; x_{1,2}, x_{3,2}, x_{3,3}\right), \\
\left(x_{3,4} ; x_{2,6}, x_{2,5}, x_{1,5}\right), & \left(x_{2,7} ; x_{1,2}, x_{3,4}, x_{3,2}\right)
\end{array}\right\}
$$

or

$$
\left\{\begin{array}{ll}
x_{2,7} x_{1,4} x_{2,6} x_{1,1}, & x_{2,6} x_{1,2} x_{2,7} x_{3,4}, \\
x_{3,3} x_{2,6} x_{3,2} x_{2,7}, & \left(x_{3,4} ; x_{2,6}, x_{2,5}, x_{1,5}\right)
\end{array}\right\}
$$

or

$$
\left\{\begin{array}{ll}
x_{2,7} x_{1,4} x_{2,6} x_{1,1}, & x_{3,3} x_{2,6} x_{3,2} x_{2,7}, \\
x_{1,2} x_{2,7} x_{3,4} x_{2,5}, & x_{1,2} x_{2,6} x_{3,4} x_{1,5}
\end{array}\right\}
$$

By Remark 1.2, required number of paths and stars for the remaining choices of p and q can be obtained from the paired stars given above.

Theorem 4.7. The graph $K_{m} \times K_{n}$ has a $(3 ; p, q)$-decomposition for every admissible pair (p, q) of nonnegative integers with $3(p+q)=E\left(K_{m} \times K_{n}\right)$ if and only if $m n(m-1)(n-1) \equiv 0(\bmod 6),(p, q)=(2,0)$ when $(m, n)=$ $(2,3)$ or $(m, n)=(3,2)$ and $p \neq 1$ when $(m, n)=(2,4)$ or $(m, n)=(4,2)$.
Proof. When $m=2$ and $n=3,4$ or $m=3,4$ and $n=2$, the result follows from Theorem 2.6.

Necessity. Since $K_{m} \times K_{n}$ is $(n-1)(m-1)$-regular with $m n$ vertices, the necessity follows from Lemma 2.5.

Sufficiency. To construct the required decomposition, we consider the following two cases.

Case(1) $n \equiv 0$ or $1(\bmod 3)$.
The graph $K_{m} \times K_{n}$ can be viewed as edge-disjoint union of $m(m-1) / 2$ copies of $K_{n, n}-I$. Since $n \equiv 0$ or $1(\bmod 3)$, by Theorem 2.6 , the graph $K_{n, n}-I$ has a $(3 ; p, q)$-decomposition except when $(n, p)=(4,1)$ or when $n=3$ and $q>0$. Hence by Remark 1.1, the graph $K_{m} \times K_{n}$ has the desired decomposition except $(n, p)=(4,1)$ and $q>0$ when $n=3$. We prove the required decomposition for $(n, p)=(4,1)$ and $q>0$ when $n=3$ in two subcases.
Subcase 1(i) $m \equiv 0$ or $1(\bmod 3)$.
Since $K_{m} \times K_{n} \cong K_{n} \times K_{m}$, the graph $K_{n} \times K_{m}$ can be viewed as edge-disjoint union of $n(n-1) / 2$ copies of $K_{m, m}-I$. Since $m \equiv 0$ or 1 $(\bmod 3)$, by Theorem 2.6 , the graph $K_{m, m}-I$ has a $(3 ; p, q)$-decomposition except when $(m, p)=(4,1)$ and $m=3, q>0$. Hence by Remark 1.1, the graph $K_{m} \times K_{n}$ has the desired decomposition except when $(m, p)=(4,1)$ and $q>0$ when $m=3$. Here $K_{3} \times K_{3}$ and $K_{3} \times K_{4}$ have a $(3 ; p, q)$-decomposition, by Lemmas 4.2 and 4.3. So it is enough to prove the required decomposition for $(m, n, p)=(4,4,1)$. We can write $K_{4} \times K_{4}=\left(K_{3} \times K_{4}\right) \oplus\left(S_{4} \times K_{4}\right)$. By Remark 1.3, $S_{4} \times K_{4}$ has an S_{4}-decomposition. Also, by Lemma $4.3, K_{3} \times K_{4}$ has a $(3 ; p, q)$ decomposition and hence by Remark 1.1, the graph $K_{4} \times K_{4}$ has the desired decomposition.

Subcase 1(ii) $m \equiv 2(\bmod 3)$.
When $n=4$, if $m=6 k+2, k \in \mathbb{Z}^{+}$, then $K_{m} \times K_{4}=\left(K_{8} \times K_{4}\right) \oplus$ $\left(K_{6(k-1)} \times K_{4}\right) \oplus\left(K_{8,6(k-1)} \times K_{4}\right)=\left(K_{8} \times S_{4}\right) \oplus\left(K_{8} \times K_{3}\right) \oplus\left(K_{6(k-1)} \times\right.$ $\left.K_{4}\right) \oplus\left(K_{8,6(k-1)} \times K_{4}\right)$. By Theorem 1.1 and Remark 1.3, $K_{8} \times S_{4}$ and $K_{8,6(k-1)} \times K_{4}$ have an S_{4}-decomposition. Also by Lemma 4.6, $K_{8} \times K_{3}$ has a $(3 ; p, q)$-decomposition. Since $K_{6(k-1)} \times K_{4}$ has a $(3 ; p, q)$-decomposition (by Subcase 1(i)), by Remark 1.1, the graph $K_{m} \times K_{4}$ has the desired decomposition.

If $m=6 k+5, k \geq 0$ is an integer, then $K_{m} \times K_{4}=\left(K_{5} \times K_{4}\right) \oplus\left(K_{6 k} \times\right.$ $\left.K_{4}\right) \oplus\left(K_{5,6 k} \times K_{4}\right)=\left(K_{5} \times S_{4}\right) \oplus\left(K_{5} \times K_{3}\right) \oplus\left(K_{6 k} \times K_{4}\right) \oplus\left(K_{5,6 k} \times K_{4}\right)$. By Theorem 1.1 and Remark 1.3, $K_{5} \times S_{4}$ and $K_{5,6 k} \times K_{4}$ have a $S_{4^{-}}$ decomposition. Also by Lemma 4.4, $K_{5} \times K_{3}$ has a $(3 ; p, q)$-decomposition. Since $K_{6 k} \times K_{4}$ has a (3; p, q)-decomposition (by Subcase 1(i)), by Remark 1.1, the graph $K_{m} \times K_{4}$ has the desired decomposition.

When $n=3$, if $m=6 k+2, k \in \mathbb{Z}^{+}, K_{m} \times K_{3}=\left(K_{8} \times K_{3}\right) \oplus\left(K_{6(k-1)} \times\right.$ $\left.K_{3}\right) \oplus\left(K_{6(k-1), 8} \times K_{3}\right)$. By Lemma $4.6, K_{8} \times K_{3}$ has a $(3 ; p, q)$-decomposition and by Theorem 1.1 and Lemma 4.1, $K_{6(k-1), 8} \times K_{3}$ has a $(3 ; p, q)$-decomposition with $p \neq 1$. Since $K_{6(k-1)} \times K_{3}$ has a $(3 ; p, q)$-decomposition (by Subcase 1(i)), by Remark 1.1, the graph $K_{m} \times K_{3}$ has the desired decomposition with $p \neq 1$. For $p=1$, the required decomposition can be obtained from a $(3 ; 1, q)$-decomposition of $K_{8} \times K_{3}$ and (3;0,q)-decomposition of the remaining graphs.

If $m=6 k+5, k \geq 0$ is an integer, $K_{m} \times K_{3}=\left(K_{5} \times K_{3}\right) \oplus\left(K_{6 k} \times K_{3}\right) \oplus$ $\left(K_{6 k, 5} \times K_{3}\right)$. By Lemma 4.4, $K_{5} \times K_{3}$ has a ($3 ; p, q$)-decomposition and by Theorem 1.1 and Lemma 4.1, $K_{6 k, 5} \times K_{3}$ has a ($3 ; p, q$)-decomposition with $p \neq 1$. Since $K_{6 k} \times K_{3}$ has a $(3 ; p, q)$-decomposition, by Remark 1.1, the graph $K_{m} \times K_{3}$ has the desired decomposition with $p \neq 1$. For $p=1$, the required decomposition can be obtained from a $(3 ; 1, q)$-decomposition of $K_{5} \times K_{3}$ and $(3 ; 0, q)$-decomposition of the remaining graphs.

Case(2) $m \equiv 0$ or $1(\bmod 3)$ and $n \equiv 2(\bmod 3)$.
Since tensor product is commutative, $K_{m} \times K_{n} \cong K_{n} \times K_{m}$. By Case $1, K_{n} \times K_{m}$ has a (3; p, q)-decomposition.

$5 \quad(3 ; p, q)$-decomposition of $\boldsymbol{K}_{m} \otimes \overline{\boldsymbol{K}_{n}}$

In this section we obtain the existence of $(3 ; p, q)$-decomposition of complete multipartite graph as follows:

Lemma 5.1. The graph $K_{3} \otimes \overline{K_{2}}$ has a $(3 ; p, q)$-decomposition, for every admissible pair (p, q) of nonnegative integers with $3(p+q)=\left|E\left(K_{3} \otimes \overline{K_{2}}\right)\right|$.

Proof. Let $V\left(K_{3} \otimes \overline{K_{2}}\right)=\left\{x_{i, j}: 1 \leq i \leq 3,1 \leq j \leq 2\right\}$. Now, $K_{3} \otimes \overline{K_{2}}$ has a (3; p, q)-decomposition as follows:

1. $p=0, q=4$. The required stars are
$\left(x_{1,1} ; x_{2,1}, x_{2,2}, x_{3,2}\right),\left(x_{1,2} ; x_{2,1}, x_{2,2}, x_{3,1}\right),\left(x_{3,1} ; x_{1,1}, x_{2,1}, x_{2,2}\right)$, $\left(x_{3,2} ; x_{1,2}, x_{2,1}, x_{2,2}\right)$.
2. $p=1, q=3$. The required path and stars are
$x_{3,1} x_{2,1} x_{3,2} x_{2,2}$ and $\left(x_{1,1} ; x_{3,2}, x_{2,1}, x_{3,1}\right),\left(x_{1,2} ; x_{3,1}, x_{2,1}, x_{3,2}\right)$, $\left(x_{2,2} ; x_{1,1}, x_{1,2}, x_{3,1}\right)$ respectively.
3. $p=2, q=2$. The required paths and stars are $x_{3,1} x_{2,1} x_{3,2} x_{1,2}, x_{3,2} x_{2,2} x_{3,1} x_{1,1}$ and ($\left.x_{1,1} ; x_{2,1}, x_{2,2}, x_{3,2}\right)$, $\left(x_{1,2} ; x_{2,1}, x_{2,2}, x_{3,1}\right)$ respectively.
4. $p=3, q=1$. The required paths and star are
$x_{1,1} x_{3,1} x_{1,2} x_{2,1}, x_{1,2} x_{3,2} x_{1,1} x_{2,1}, x_{3,1} x_{2,1} x_{3,2} x_{2,2}$ and $\left(x_{2,2} ; x_{1,1}, x_{1,2}, x_{3,1}\right)$ respectively.
5. $p=4, q=0$. The required paths are
$x_{1,1} x_{3,1} x_{1,2} x_{2,1}, x_{1,2} x_{3,2} x_{1,1} x_{2,1}, x_{2,1} x_{3,2} x_{2,2} x_{1,2}$,
$x_{1,1} x_{2,2} x_{3,1} x_{2,1}$.
Lemma 5.2. The graph $K_{3} \otimes \overline{K_{3}}$ has a $(3 ; p, q)$-decomposition, for every admissible pair (p, q) of nonnegative integers with $3(p+q)=\left|E\left(K_{3} \otimes \overline{K_{3}}\right)\right|$.

Proof. Let $V\left(K_{3} \otimes \overline{K_{3}}\right)=\left\{x_{i, j}: 1 \leq i, j \leq 3\right\}$. Since $K_{3} \otimes \overline{K_{3}}=3 K_{3,3}$, $K_{3} \otimes \overline{K_{3}}$ has a $(3 ; p, q)$-decomposition with $p \neq 1$, by Theorem 1.1. For $p=1$, the required path and stars are
$x_{2,1} x_{1,2} x_{2,3} x_{3,2},\left(x_{1,1} ; x_{2,1}, x_{2,2}, x_{2,3}\right),\left(x_{1,1} ; x_{3,1}, x_{3,2}, x_{3,3}\right)$,
$\left(x_{1,2} ; x_{3,1}, x_{3,2}, x_{2,2}\right),\left(x_{1,3} ; x_{3,1}, x_{3,2}, x_{2,2}\right),\left(x_{2,1} ; x_{3,1}, x_{3,2}, x_{1,3}\right)$,
$\left(x_{2,2} ; x_{3,1}, x_{3,2}, x_{3,3}\right),\left(x_{2,3} ; x_{3,1}, x_{3,3}, x_{1,3}\right),\left(x_{3,3} ; x_{1,2}, x_{1,3}, x_{2,1}\right)$.
Lemma 5.3. The graph $K_{3} \otimes \overline{K_{4}}$ has a $(3 ; p, q)$-decomposition, for every admissible pair (p, q) of nonnegative integers with $3(p+q)=\left|E\left(K_{3} \otimes \overline{K_{4}}\right)\right|$.

Proof. Since $K_{3} \otimes \overline{K_{4}}=K_{4,4,4}$, let $V\left(K_{4,4,4}\right)=V_{1} \cup V_{2} \cup V_{3}$, where $V_{i}=$ $\underline{V_{i}^{1}}\left(=\left\{x_{i, 1}, x_{i, 2}\right\}\right) \cup V_{i}^{2}\left(=\left\{x_{i, 3}, x_{i, 4}\right\}\right)$. We can view $K_{4,4,4}$ as $\left(K_{3} \otimes\right.$ $\left.\overline{K_{2}}\right) \oplus\left(K_{3} \otimes \overline{K_{2}}\right) \oplus_{i \neq j \in\{1,2,3\}} K_{V_{i}^{1}, V_{j}^{2}}$. Now, $\oplus_{i \neq j \in\{1,2,3\}} K_{V_{i}^{1}, V_{j}^{2}}$ has a S_{4}-decomposition as follows: $\left\{\left(x_{i, 1} ; x_{2,3}, \boldsymbol{x}_{\mathbf{2}, \mathbf{4}}, \boldsymbol{x}_{\boldsymbol{j}, \mathbf{3}}\right),\left(x_{i, 2} ; x_{2,3}, \boldsymbol{x}_{\mathbf{2}, \boldsymbol{4}}, x_{j, 4}\right)\right\}$, $\left\{\left(x_{i, 3} ; x_{2,1}, \boldsymbol{x}_{\mathbf{2 , 2}}, \boldsymbol{x}_{\boldsymbol{j}, \mathbf{2}}\right),\left(x_{i, 4} ; x_{2,1}, \boldsymbol{x}_{\mathbf{2 , 2}}, x_{j, 1}\right)\right\}, i=1, j=3$ and $i=3, j=$ 1. By Remark 1.2, we can use these pairs of stars to construct the required decomposition into an even number of paths and stars. For odd p and q, we decompose $K_{3} \otimes \overline{K_{2}}$ into odd number of paths and stars using Lemma 5.1. Hence by Remark 1.1, the graph $K_{3} \otimes \overline{K_{4}}$ has the desired decomposition.

Lemma 5.4. Let G be an S_{4}-decomposible graph and $p, q \geq 0$ be integers with $3(p+q)=\left|E\left(G \otimes \overline{K_{n}}\right)\right|$ and $p \neq 1$. Then $G \otimes \overline{K_{n}}$ has a $(3 ; p, q)$-decomposition for all even n and every admissible pair (p, q).

Proof. Since G is S_{4}-decomposible graph, for each star $(a ; u, v, w)$ in G, we have the following pairs of stars in $G \otimes K_{n}$; for each $j \in\{1,3, \cdots, n-1\}$, $\left\{\left(x_{a, j} ; x_{u, i}, \boldsymbol{x}_{\boldsymbol{v}, \boldsymbol{i}}, \boldsymbol{x}_{\boldsymbol{w}, \boldsymbol{i}}\right),\left(x_{a, j+1} ; x_{u, i}, x_{v, i}, \boldsymbol{x}_{\boldsymbol{w}, \boldsymbol{i}}\right)\right\}$, where $1 \leq i \leq n$. Then by applying remark 1.2 to the pairs of stars mentioned above we obtained all possible even number of paths and stars of $G \otimes \overline{K_{n}}$. Now, consider

$$
\left\{\left(x_{a, 1} ; x_{u, 1}, x_{v, 1}, x_{w, 1}\right),\left(x_{a, 1} ; x_{u, 2}, x_{v, 2}, x_{w, 2}\right),\left(x_{a, 2} ; x_{u, 1}, x_{v, 1}, x_{w, 1}\right)\right\}
$$

and decompose it into $3 P_{4}$ as given below. $\left\{x_{u, 2} x_{a, 1} x_{u, 1} x_{a, 2}, x_{v, 2} x_{a, 1} x_{v, 1} x_{a, 2}\right.$, $\left.x_{w, 2} x_{a, 1} x_{w, 1} x_{a, 2}\right\}$. The remaining number of paths and stars can be obtained from the remaining pairs of stars given above except when $p=1$.

Theorem 5.5. Let p and q be nonnegative integers, and let $n>1$. Then $K_{m} \otimes \overline{K_{n}}$ has a $(3 ; p, q)$-decomposition for every admissible pair (p, q) with $3(p+q)=E\left(K_{m} \otimes \overline{K_{n}}\right)$ if and only if $m n^{2}(m-1) \equiv 0(\bmod 6)$ and $p \neq 1$ when $(m, n)=(2,3)$.

Proof. When $(m, n)=(2,3)$, the result follows from Theorem 1.1.
Necessity. Since $K_{m} \otimes \overline{K_{n}}$ is $n(m-1)$-regular with $m n$ vertices, the necessity follows from Lemma 2.5.

Sufficiency. To construct the required decomposition, we consider the following two cases.

Case (1) $n \equiv 0(\bmod 3)$.
The graph $K_{m} \otimes \overline{K_{n}}$ can be viewed as edge-disjoint union of $m(m-$ 1)/2 copies of $K_{n, n}$. Since $n \equiv 0(\bmod 3)$, by Theorem 1.1, the graph $K_{n, n}$ has a $(3 ; p, q)$-decomposition except $p=1$ when $n=3$. Hence by Remark 1.1, the graph $K_{m} \otimes \overline{K_{n}}$ has the desired decomposition except when $(n, p)=(3,1)$.

Subcase 1 (i) $m \equiv 0$ or $1(\bmod 3)$.
We can write $K_{m} \otimes \overline{K_{3}}=3 K_{m} \oplus\left(K_{m} \times K_{3}\right)$. Since $m \equiv 0$ or 1 $(\bmod 3)$, by Theorem 1.2, the graph K_{m} has a $(3 ; p, q)$-decomposition, whenever $m \geq 6$. Also by Theorem $4.7, K_{m} \times K_{3}$ has a $(3 ; p, q)$-decomposition. Hence by Remark 1.1, the graph $K_{m} \otimes \overline{K_{3}}$ has the desired decomposition whenever $m \geq 6$. Since $K_{4} \otimes \overline{K_{3}}=\left(K_{3} \otimes \overline{K_{3}}\right) \oplus\left(S_{4} \otimes \overline{K_{3}}\right)$, by Remark 1.4, $S_{4} \otimes \overline{K_{3}}$ has an S_{4}-decomposition and by Lemma 5.2, $K_{3} \otimes \overline{K_{3}}$ has a $(3 ; p, q)$-decomposition and hence we have the required decomposition for $m=3,4$.

Subcase 1(ii) $m \equiv 2(\bmod 3)$.
Let $m=3 k+2, k \geq 0$ be an integer, $K_{m} \otimes \overline{K_{3}}=\left(K_{3 k} \otimes \overline{K_{3}}\right) \oplus\left(K_{2} \otimes\right.$ $\left.\overline{K_{3}}\right) \oplus\left(K_{3 k, 2} \otimes \overline{K_{3}}\right)$. By Theorem 1.1 and Remark 1.4, $K_{3 k, 2} \otimes \overline{K_{3}}$ and $K_{2} \otimes \overline{K_{3}} \cong\left(K_{3,3}\right)$ have a S_{4}-decomposition. By Subcase 1(i), we have that $K_{3 k} \otimes \overline{K_{3}}$ has a required decomposition and hence by Remark 1.1, the graph $K_{m} \otimes \overline{K_{n}}$ has the desired decomposition.
Case(2) $m \equiv 0$ or $1(\bmod 3)$ and $n \equiv 1$ or $2(\bmod 3)$.
We can write $K_{m} \otimes \overline{K_{n}}=n K_{m} \oplus\left(K_{m} \times K_{n}\right)$. Since $m \equiv 0$ or 1 $(\bmod 3)$, by Theorem 1.2, the graph K_{m} has a $(3 ; p, q)$-decomposition, where $m \geq 6$. Also by Theorem $4.7, K_{m} \times K_{n}$ has a $(3 ; p, q)$-decomposition. Hence by Remark 1.1, the graph $K_{m} \otimes \overline{K_{n}}$ has the desired decomposition whenever $m \geq 6$. For $m<6$ i.e. when $m=3,4$, to construct the required decomposition, we consider the following two subcases.

Subcase 2(i) $m=3$.
When $n=3 k+1 \geq 4$, we write $K_{m} \otimes \overline{K_{n}}=K_{3} \otimes \overline{K_{3 k+1}}=\left(K_{3} \otimes \overline{K_{4}}\right) \oplus$ $\left(K_{3} \otimes \overline{K_{3(k-1)}}\right) \oplus 6 K_{4,3(k-1)}$. By Lemma 5.3 and Case $1, K_{3} \otimes \overline{K_{4}}$ and $K_{3} \otimes \overline{K_{3(k-1)}}$ have a $(3 ; p, q)$-decomposition. Also, by Theorem 1.1, $K_{4,3(k-1)}$ has a $(3 ; p, q)$-decomposition with $p \neq 1$ when $k=2$. Hence by Remark 1.1, the graph $K_{m} \otimes \overline{K_{n}}$ has the desired decomposition with $p \neq 1$ when $k=2$. For $p=1$, the required decomposition can be obtained from a $(3 ; 1, q)$-decomposition of $K_{3} \otimes \overline{K_{4}}$ and $(3 ; 0, q)$-decomposition of the remaining graphs.

When $n=3 k+2, K_{m} \otimes \overline{K_{n}}=K_{3} \otimes \overline{K_{3 k+2}}=\left(K_{3} \otimes \overline{K_{2}}\right) \oplus\left(K_{3} \otimes\right.$ $\left.\overline{K_{3 k}}\right) \oplus 6 K_{2,3 k}$. By Lemma 5.1 and Case $1, K_{3} \otimes \overline{K_{2}}$ and $K_{3} \otimes \overline{K_{3 k}}$ have a $(3 ; p, q)$-decomposition. Also, by Theorem 1.1, $K_{2,3 k}$ has a $(3 ; p, q)$-decomposition with $p \neq 1$. Hence by Remark 1.1, the graph $K_{m} \otimes \overline{K_{n}}$ has the desired decomposition with $p \neq 1$. For $p=1$, the required decomposition can be obtained from a $(3 ; 1, q)$-decomposition of $K_{3} \otimes \overline{K_{2}}$ and $(3 ; 0, q)$-decomposition of the remaining graphs.

Subcase 2(ii) $m=4$.
When $n=3 k+1 \geq 4$, we write $K_{m} \otimes \overline{K_{n}}=K_{4} \otimes \overline{K_{3 k+1}}=\left(K_{4} \otimes \overline{K_{4}}\right) \oplus$ $\left(K_{4} \otimes \overline{K_{3(k-1)}}\right) \oplus 12 K_{4,3(k-1)}=\left(K_{3} \otimes \overline{K_{4}}\right) \oplus\left(S_{4} \otimes \overline{K_{4}}\right) \oplus\left(K_{4} \otimes\right.$ $\left.\overline{K_{3(k-1)}}\right) \oplus 12 K_{4,3(k-1)}$. By Lemmas 5.3 and 5.4 and Case $1, K_{3} \otimes \overline{K_{4}}$, $S_{4} \otimes \overline{K_{4}}$ and $K_{4} \otimes \overline{K_{3(k-1)}}$ have a $(3 ; p, q)$-decomposition. Also, by Theorem 1.1, $K_{4,3(k-1)}$ has a $(3 ; p, q)$-decomposition with $p \neq 1$ when $k=2$. Hence by Remark 1.1, the graph $K_{m} \otimes \overline{K_{n}}$ has the desired decomposition (as in Subcase 2(i)).
When $n=3 k+2$, we write $K_{m} \otimes \overline{K_{n}}=K_{4} \otimes \overline{K_{3 k+2}}=\left(K_{3} \otimes \overline{K_{2}}\right) \oplus$ $\left(S_{4} \otimes \overline{K_{2}}\right) \oplus\left(K_{4} \otimes \overline{K_{3 k}}\right) \oplus 12 K_{2,3 k}$. By Lemmas 5.1 and 5.4 and Case $1, K_{3} \otimes \overline{K_{2}}, S_{4} \otimes \overline{K_{2}}$ and $K_{4} \otimes \overline{K_{3 k}}$ have a $(3 ; p, q)$-decomposition. Also by Theorem 1.1, $K_{2,3 k}$ has a $(3 ; p, q)$-decomposition with $p \neq 1$. Hence by Remark 1.1, the graph $K_{m} \otimes \overline{K_{n}}$ has the desired decomposition (as in Subcase 2(i)).

Acknowledgement

The authors thank the Department of Science and Technology, Government of India, New Delhi for its financial support through the Grant No. DST/ SR/ S4/ MS:828/13. The second author thank the University Grant Commission for its support through the Grant No. F.510/7/DRS-I/2016(SAPI). The authors would like to thank the referees for their valuable suggestions and comments, which improved the presentation of the paper.

References

[1] A.A. Abueida and M. Daven, Multidesigns for graph-pairs of order 4 and 5, Graphs Combin. 19 (2003), 433-447.
[2] A.A. Abueida and M. Daven, Multidecompositions of the complete graph, Ars Combin. 72 (2004), 17-22.
[3] A.A. Abueida and M. Daven, K.J. Roblee Multidesigns of the λ-fold complete graph-pairs of orders 4 and 5, Australas. J. Combin. 32 (2005), 125-136.
[4] A.A. Abueida and T. O'Neil, Multidecomposition of λK_{m} into small cycles and claws. Bull. Inst. Comb. Appl. 49 (2007), 32-40.
[5] J.A. Bondy and U.S.R Murty, Graph Theory with Applications, The Macmillan Press Ltd, New York (1976).
[6] S. Jeevadoss and A. Muthusamy, Decomposition of product graphs into paths and cycles of length four, Graphs Combin. 32 (2016), 199-223.
[7] H.M. Priyadharsini and A. Muthusamy,
$\left(G_{m}, H_{m}\right)$-multidecomposition of $K_{m, m}(\lambda)$, Bull. Inst. Combin. Appl. 66 (2012), 42-48.
[8] T.-W. Shyu, Decomposition of complete graphs into paths and stars, Discrete Math. 310 (2010), 2164-2169.
[9] T.-W. Shyu, Decomposition of complete bipartite graphs into paths and stars with same number of edges, Discrete Math 313 (2013), 865871.

[^0]: *Corresponding author.
 Key words and phrases: Graph decomposition, Path, Star and Product graph AMS (MOS) Subject Classifications: 05C51, 05C70

