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Abstract: Let Pk and Sk respectively denote a path and a star on k
vertices. Decomposition of G into p copies of H1 and q copies of H2 is
denoted as {pH1, qH2}-decomposition. In this paper, we give necessary
and sufficient conditions for the existence of a {pP4, qS4}-decomposition
of product graphs namely cartesian product, tensor product and wreath
product of graphs, where p and q are nonnegative integers.

1 Introduction
Unless stated otherwise all graphs considered here are finite, simple, and
undirected. For the standard graph-theoretic terminology the readers are
referred to Bondy and Murty [5]. Let Pk, Sk, Kk respectively denote a
path, star and complete graph on k vertices, and let Km,n denote the com-
plete bipartite graph with m and n vertices in the parts. We denote a
star Sk with center x0 and end vertices x1, · · · , xk−1 by (x0;x1, · · · , xk−1).
A graph whose vertex set is partitioned into subsets V1, ..., Vm with edge
set {xy : x ∈ Vi, y ∈ Vj , 1 ≤ i 6= j ≤ m} is a complete m-partite graph, de-
noted by Kn1,...,nm

, when |Vi| = ni for all i. For G = K2n or Kn,n,
the graph G − I denotes G with a 1-factor I removed. For any inte-
ger λ > 0, λG denotes the graph consisting of λ edge-disjoint copies
of G. The complement of the graph G is denoted by G. For an ar-
bitrary graph G, a list of edge-disjoint subgraphs H1, · · · , Hk such that
E(G) = E(H1)∪· · ·∪E(Hk) is called a decomposition ofG and we writeG as
G = H1⊕···⊕Hk. For 1 ≤ i ≤ k, if Hi

∼= H, we say that G has a H-decom-
position. For two graphs G and H we define their cartesian product G2H,
tensor product G ×H and lexicographic or wreath product G ⊗H with
vertex set V (G) × V (H) = {(g, h) : g ∈ V (G) and h ∈ V (H)} and their
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edge set as given below.

E(G 2 H) = {(g, h)(g′, h′) : g = g′, hh′ ∈ E(H), or gg′ ∈ E(G), h = h′},
E(G×H) = {(g, h)(g′, h′) : gg′ ∈ E(G) and hh′ ∈ E(H)},
E(G⊗H) = {(g, h)(g, h′) : gg′ ∈ E(G) or g = g′, hh′ ∈ E(H)}.

It is well known that the Cartesian product is commutative and associative
and the tensor product is commutative and distributive over edge-disjoint
union of graphs, i.e., if G = G1 ⊕ · · · ⊕ Gk , then G × H = (G1 × H) ⊕
· · · ⊕ (Gk ×H). It is easy to observe that Km⊗Kn

∼= Kn,··· ,n(m times) and

Km⊗Kn = (Km×Kn) ⊕nKm. If G has a decomposition into p copies of H1

and q copies of H2, then we say that G has a {pH1, qH2}-decomposition.

Study of {pH1, qH2}-decomposition of graphs is not new. Abueida et al.
[1, 3] completely determined the values of n for which Kn(λ) admits a
{pH1, qH2}-decomposition such that H1 ∪ H2

∼= Kt, when λ ≥ 1 and
|V (H1)| = |V (H2)| = t, where t ∈ {4, 5}. Abueida and Daven [2] proved
that there exists a {pKk, qSk+1}-decomposition of Kn, for k ≥ 3 and
n ≡ 0, 1(mod k). Abueida and O’Neil [4] proved that for k ∈ {3, 4, 5},
there exists a {pCk, qSk}-decomposition of Kn(λ), whenever n ≥ k + 1
except for the ordered triples (k, n, λ) ∈ {(3, 4, 1) , (4, 5, 1), (5, 6, 1), (5, 6, 2),
(5, 6, 4), (5, 7, 1), (5, 8, 1)}. Shyu [8, 9] obtained a necessary and sufficient
condition on (p, q) for the existence of {pP4, qS4}-decomposition of Kn

and Km,n. Priyadharsini and Muthusamy [7] established necessary and
sufficient conditions for the existence of the (Gn, Hn)-multidecomposition
of Kn(λ) where Gn, Hn ∈ {Cn, Pn−1, Sn−1}. Jeevadoss and Muthusamy
[6] obtained necessary and sufficient conditions for {pP5, qC4}-decomposi-
tion of product graphs

In this paper, we show that the necessary conditions are sufficient for the
existence of a {pP4, qS4}-decomposition of Km2Kn, Km ×Kn and Km ⊗
Kn, where p and q are nonnegative integers. A decomposition of a graph
G into p copies of a path of length k and q copies of a star with k edges for
every admissible pair (p, q) will be referred to as a (k; p, q)-decomposition.
To prove our results we state the following:

Theorem 1.1 ([9]). Let p, q ≥ 0, and let 0 < m ≤ n be integers. There ex-
ists a (3; p, q)-decomposition of Km,n if and only if the following conditions
hold:

1. 3(p+ q) = mn;

2. p ≥ 1⇒ m ≥ 2;

3. (m = 3 ∨ (m = 2 ∧ n ≡ 0 (mod 3)))⇒ p 6= 1.
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Theorem 1.2 ([8]). Let p, q ≥ 0 and n > 0 be integers. There exists a

(3; p, q)-decomposition of Kn if and only if n ≥ 6 and 3(p+ q) = n(n−1)
2 .

Remark 1.1. If Gi has a (3; pi, qi)-decomposition, for i = 1, 2, then G1∪G2

has a (3; p1 + p2, q1 + q2)-decomposition.

Remark 1.2. If two stars S1
4 and S2

4 with distinct centers, share at least
two vertices, then S1

4 ⊕ S2
4 can be decomposed into two P4.

Remark 1.3. Given a star (a;u, v, w), the set {((a, i); (u, j), (v, j), (w, j)),
1 ≤ i 6= j ≤ n} provides an S4-decomposition of (a;u, v, w)×Kn.

Remark 1.4. Given a star (a;u, v, w), the set {((a, i); (u, j), (v, j), (w, j)),
1 ≤ i, j ≤ n} provides an S4-decomposition of (a;u, v, w)⊗Kn.

2 Base constructions
In this section we establish a necessary and sufficient conditions for the
existence of (3; p, q)-decomposition in Kn,n − I.

Example 1. There exists a (3; p, q)-decomposition of G1 = K5\E(K2) and
G2 = K8\E(K2), for every admissible pair (p, q) of nonnegative integers
with 3(p+ q) = |E(Gi)| , i = 1, 2.

Solution: Let V (Kr) = {xi : 1 ≤ i ≤ r}. We give a (3; p, q)-decomposition
of K5\(E(K2) = x1x2) as follows:

1. p = 0, q = 3. The required stars are (x5;x1, x2, x3), (x4;x5, x1, x2),
(x3;x1, x2, x4).

2. p = 1, q = 2. The required path and stars are x4x2x3x1 and
(x5;x1, x2, x3), (x4;x3, x5, x1) respectively.

3. p = 2, q = 1. The required paths and star are x5x1x3x4, x3x2x4x1
and (x5;x4, x2, x3) respectively.

4. p = 3, q = 0. The required paths and are x1x5x3x2, x1x4x5x2,
x1x3x4x2.

To prove the required decomposition of K8\E(K2), first we decompose
K8\(E(K2) = x1x4) into 9S4 as follows:

{(x2;x6,x7, x8), (x5;x6,x7, x1)} ,
{(x4;x5, x6,x7), (x6;x7, x8, x1)} ,
{(x3;x4, x5, x6), (x8;x3, x4,x5)} ,
{(x2;x3, x4, x5), (x1;x2,x3, x8), (x7;x8, x3, x1)} .

Now, the last three S4 has a decomposition into either {1P4, 2S4} or {3P4}
as follows:

{x2x3x1x8, (x2;x1, x4, x5), (x7;x8, x3, x1)}
or {x7x8x1x3, x5x2x3x7, x7x1x2x4} .
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By Remark 1.2, required number of paths and stars for the remaining
choices can be obtained from the paired stars given above. HenceK8\E(K2)
has a (3; p, q)-decomposition.

Example 2. There exists a (3; p, q)-decomposition of G1 = K6\ {P1,1, P1,2}
and G2 = K6\ {P2,1, P2,2}, where P1,1 = x3x4x6x5, P1,2 = x3x5x1x6,
P2,1 = x3x1x2x5 and P2,2 = x1x6x2x3, for every admissible pair (p, q)
of nonnegative integers with 3(p+ q) = |E(Gi)| , i = 1, 2.

Solution: Let V (K6) = {xi : 1 ≤ i ≤ 6}. Now, K6\ {P1,1, P1,2} has a
(3; p, q)-decomposition as follows:

1. p = 0, q = 3. The required stars are (x3;x6, x1, x2), (x4;x5, x2, x1),
(x2;x6, x5, x1).

2. p = 1, q = 2. The required path and stars are x1x4x5x2 and
(x3;x6, x1, x2), (x2;x6, x4, x1) respectively.

3. p = 2, q = 1. The required paths and star are x1x2x5x4, x6x2x4x1
and (x3;x6, x1, x2) respectively.

4. p = 3, q = 0. The required paths are x6x3x1x2, x3x2x5x4, x6x2x4x1.

The (3; p, q)-decomposition of K6\ {P2,1, P2,2} is given below.

1. p = 0, q = 3. The required stars are (x3;x6, x5, x4), (x4;x6, x2, x1),
(x5;x6, x4, x1).

2. p = 1, q = 2. The required path and stars are x6x3x4x5 and
(x4;x6, x2, x1), (x5;x6, x4, x1) respectively.

3. p = 2, q = 1. The required paths and star are x1x5x4x2, x5x6x4x1
and (x3;x6, x5, x4) respectively.

4. p = 3, q = 0. The required paths are x1x5x4x2, x3x5x6x4, x6x3x4x1.

Lemma 2.1. There exists a (3; p, q)-decomposition of K4,4 − I, for every
admissible pair (p, q) of nonnegative integers with 3(p+ q) = |E(K4,4 − I)|
and p 6= 1.

Proof. Let V (G) = {x1, · · · , x4}∪{y1, · · · , y4}. First we decomposeK4,4−I
into 4S4 as follows:

{(x1;y2, y3, y4), (x2; y1,y3, y4)}, {(x3; y1,y2, y4), (x4; y1,y2, y3)}.

By Remark 1.2, we have the required even number of paths and stars from
the paired stars. The last 3S4 gives 3P4 as follows:

{x2y1x4y3, y3x2y4x3, x4y2x3y1} .
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Lemma 2.2. There exists a (3; p, q)-decomposition of K6,6 − I, for every
admissible pair (p, q) of nonnegative integers with 3(p+ q) = |E(K6,6 − I)|.
Proof. Let V (G) = {x1, · · · , x6}∪{y1, · · · , y6}. First we decomposeK6,6−I
into 10S4 as follows:

{(x2;y1, y3, y4), (x5;y3, y4, y6)} , {(x4; y3,y5, y6), (x6; y3, y4,y5)} ,
{(y5;x1, x2, x3), (y6;x1,x2, x3)} , {(x1;y2, y3, y4), (x3; y1,y2, y4)} ,
{(y1;x4, x5, x6), (y2;x4,x5, x6)} .

Now, the last 3S4 can be decomposed into 3P4 as follows:

y4x3y2x6, x6y1x5y2, y2x4y1x3.

By Remark 1.2, the required decomposition for the remaining choices of
p and q other than p = 1 can be obtained from the paired stars given
above. For p = 1, the required path and stars are x1y2x3y4, (x3; y1, y5, y6),
(x1; y3, y5, y6), (x2; y1, y3, y4), (y2;x4, x5, x6), (y1;x4, x5, x6), (y3;x4, x5, x6),
(y4;x1, x5, x6), (y5;x2, x4, x6), (y6;x2, x4, x5).

Lemma 2.3. There exists a (3; p, q)-decomposition of K7,7 − I, for every
admissible pair (p, q) of nonnegative integers with 3(p+ q) = |E(K7,7 − I)|.
Proof. Let V (G) = {x1, · · · , x7}∪{y1, · · · , y7}. First we decomposeK7,7−I
into 14S4 as follows:

{(x2; y1,y3, y4), (x7; y1,y3, y2)} , {(x5;y3, y4, y6), (x7;y4, y5, y6)} ,
{(x1;y5, y6, y7), (x2; y5,y6, y7)} , {(x3; y5,y6, y7), (x4; y3, y5,y6)} ,
{(x6;y3, y4, y5), (x1;y2, y3, y4)} , {(x3;y1, y2, y4), (x4;y7, y1, y2)} ,
{(x5;y7, y1, y2), (x6;y7, y1, y2)} .

Now, the last 3S4 can be decomposed into 3P4 as follows:

{x5y7x4y2, x6y2x5y1, x4y1x6y7} .

By Remark 1.2, the required decomposition for the remaining choices of
p and q other than p = 1 can be obtained from the paired stars given
above. For p = 1, the required path and stars are x1y2x3y4, (x3; y1, y5, y6),
(x1; y3, y5, y6), (x2; y1, y3, y4), (y2;x4, x5, x6), (y1;x4, x5, x6), (y3;x4, x5, x6),
(y4;x1, x5, x6), (y5;x2, x4, x6), (y6;x2, x4, x5), (x7; y1, y2, y3), (x7; y4, y5, y6),
(y7;x1, x2, x3), (y7;x4, x5, x6).

Lemma 2.4. There exists a (3; p, q)-decomposition of K9,9 − I, for every
admissible pair (p, q) of nonnegative integers with 3(p+ q) = |E(K9,9 − I)|.
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Proof. Let V (G) = {x1, · · · , x9} ∪ {y1, · · · , y9}. We can write

K9,9 − I = (K6,6 − I) ⊕ K6,3 ⊕ K3,6 ⊕ (K3,3 − I).

By Lemma 2.1, K6,6 − I has a (3; p, q)-decomposition. Now, decompose
G(= K6,3 ⊕K3,6 ⊕ (K3,3 − I)) into 14S4 as follows:

{(x7;y1, y2, y3), (x8;y2, y3, y6)} , {(x9;y3, y6, y8), (x7;y6, y8, y9)} ,
{(x8;y7, y9, y1), (x9;y7, y1, y2)} , {(y4;x7, x8, x9), (y5;x7,x8, x9)} ,
{(y7;x1, x2, x3), (y8;x2, x3, x4)} , {(y9;x3, x4, x5), (y7;x4, x5, x6)} ,
{(y8;x5, x6, x1), (y9;x6, x1, x2)} .

Now, the last 3S4 can be decompose into 3P4 as follows:

{x4y7x5y8, x2y9x6y7, y9x1y8x6} .

Hence by Remark 1.2, G has a (3; p, q)-decomposition with p 6= 1. Now, by
Remark 1.1, we have the desired decomposition of K9,9 − I.

Lemma 2.5. Let p, q be nonnegative integers and G be an r-regular graph
on υ vertices. If G has a (3; p, q)-decomposition, then rυ ≡ 0 (mod 6).

Proof. Since G is r-regular with υ vertices, G has rυ/2 edges. Now, assu-
ume that G has a (3; p, q)-decomposition. Then the number of edges in the
graph must be divisible by 3, i.e., 6|rυ and hence rυ ≡ 0 (mod 6).

Theorem 2.6. The graph Kn,n − I has a (3; p, q)-decomposition for every
admissible pair (p, q) of nonnegative integers with 3(p + q) = n(n − 1) if
and only if n ≡ 0 or 1 (mod 3) with (n, p) 6= (4, 1) and q = 0 when n = 3.

Proof. Necessity. Since Kn,n − I is (n − 1)-regular with 2n vertices,
n ≡ 0 or 1 (mod 3) follows from Lemma 2.5. When n = 3, K3,3 − I
is 2-regular and hence it does not contains any star with 3 edges, there-
fore q = 0. Suppose there is a {P4, 3S4}-decomposition of K4,4 − I. Let
V (K4,4 − I) = V = V1 ∪ V2 = {u1, u2, u3, u4} ∪ {v1, v2, v3, v4} and I =
{u1v1, u2v2, u3v3, u4v4}. Without loss of generality let P4 = u1v2u3v1. So
deg(u) = 3 only for u = u2, u4 ∈ V1 and u = v3, v4 ∈ V2 in (K4,4−I)\E(P4).
Then the centers of two stars are contained in exactly one partite set say
V1. So the remaining graph is not a star since deg(u) ≤ 2 for all u ∈ V ,
therefore p 6= 1.
Sufficiency. For n = 3, the paths are x1y2x3y1, x1y3x2y1 and we proved
such decomposition in Lemma 2.1 when n = 4. We construct the required
decomposition for the remaining choices of n in four cases.
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61 62 6s

61 62 6s
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denotes K6,6 − I denotes K6,6

denotes Ki,6denotes Ki,i − I

Figure 1: The graph Kn,n − I.

Case(1) n ≡ 0 (mod 6).

Let n = 6k, k > 0 be an integer. We can write

Kn,n − I = K6k,6k − I = k(K6,6 − I) ⊕ k(k − 1)K6,6A

(See Figure 1 with s = k, i = 0). By Theorem 1.1 and Lemma 2.2,
K6,6− I and K6,6 have a (3; p, q)-decomposition. Hence by Remark 1.1,
Kn,n − I has a (3; p, q)-decomposition.

Case(2) n ≡ 1 (mod 6).

Let n = 6k + 1, k > 0 be an integer. We can write

Kn,n − I = K6k+1,6k+1 − I
= (k − 1)(K6,6 − I) ⊕ (K7,7 − I)

⊕ (k − 1)(k − 2)K6,6 ⊕ 2(k − 1)K7,6

(See Figure 1 with s = k − 1, i = 7). By Lemmas 2.2 and 2.3, K6,6 − I
and K7,7 − I have a (3; p, q)-decomposition. Also, by Theorem 1.1 K6,6

and K7,6 have a (3; p, q)-decomposition. Hence by Remark 1.1, Kn,n− I
has a (3; p, q)-decomposition.

Case(3) n ≡ 3 (mod 6).

Let n = 6k + 3, k > 0 be an integer. We can write

Kn,n − I = K6k+3,6k+3 − I
= (k − 1)(K6,6 − I) ⊕ (K9,9 − I)

⊕ (k − 1)(k − 2)K6,6 ⊕ 2(k − 1)K9,6

(See Figure 1 with s = k − 1, i = 9). By Lemmas 2.2 and 2.4, K6,6 − I
and K9,9 − I have a (3; p, q)-decomposition. Also, by Theorem 1.1 K6,6
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and K9,6 have a (3; p, q)-decomposition. Hence by Remark 1.1, Kn,n− I
has a (3; p, q)-decomposition.

Case(4) n ≡ 4 (mod 6).

Let n = 6k + 4, k > 0 be an integer. We can write

Kn,n − I = K6k+4,6k+4 − I
= k(K6,6 − I) ⊕ k(k − 1)K6,6 ⊕ (K4,4 − I) ⊕ 2kK6,4

(See Figure 1 with s = k, i = 4). By Lemmas 2.1 and 2.2, K4,4 − I and
K6,6 − I have a (3; p, q)-decomposition. Also, by Theorem 1.1 K6,6 and
K6,4 have a (3; p, q)-decomposition. Hence by Remark 1.1, Kn,n− I has
a (3; p, q)-decomposition.

3 (3; p, q)-decomposition of Km2Kn

In this section we obtain the existence of (3; p, q)-decomposition of Cartesian
product of complete graphs.

Lemma 3.1. There exists a (3; p, q)-decomposition of K62K5, for every
admissible pair (p, q) of nonnegative integers with 3(p+ q) = |E(K62K5)|.
Proof. Let V (K62K5) = {xi,j : 1 ≤ i ≤ 6, 1 ≤ j ≤ 5}. We can write

K62K5 = 3K6 ⊕ 6(K5\E(K2))⊕ (K6\ {P1,1, P1,2})
⊕ (K6\ {P2,1, P2,2}) ⊕ (P1,1 ⊕ P1,2 ⊕ P2,1 ⊕ P2,2 ⊕ 6K2),

where

P1,1 = x3,1x4,1x6,1x5,1,

P1,2 = x3,1x5,1x1,1x6,1,

P2,1 = x3,2x1,2x2,2x5,2,

P2,2 = x1,2x6,2x2,2x3,2.

Now, by Examples 1 and 2:

6(K5\E(K2)), K6\ {P1,1, P1,2} and K6\ {P2,1, P2,2}

have a (3; p, q)-decomposition. Also, by Theorem 1.2, K6 has a (3; p, q)-de-
composition. We prove (P1,1 ⊕ P1,2 ⊕ P2,1 ⊕ P2,2 ⊕ 6K2) has a (3; p, q)-
decomposition as follows:

1. p = 0, q = 6. The required stars are
(x6,1;x1,1, x5,1, x6,2), (x5,1;x1,1, x3,1, x5,2), (x4,1;x3,1, x6,1, x4,2),
(x2,2;x6,2, x5,2, x2,1), (x1,2;x1,1, x2,2, x6,2), (x3,2;x3,1, x2,2, x1,2).
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2. p = 1, q = 5. The required path and stars are
x3,1x3,2x2,2x1,2 and (x6,1;x1,1, x5,1, x6,2), (x5,1;x1,1, x3,1, x5,2),
(x4,1;x3,1, x6,1, x4,2), (x2,2;x6,2, x5,2, x2,1), (x1,2;x1,1, x3,2, x6,2)
respectively.

3. p = 2, q = 4. The required paths and stars are
x1,1x1,2x3,2x3,1, x6,2x1,2x2,2x3,2 and (x6,1;x1,1, x5,1, x6,2),
(x5,1;x1,1, x3,1, x5,2), (x4,1;x3,1, x6,1, x4,2), (x2,2;x6,2, x5,2, x2,1)
respectively.

4. p = 3, q = 3. The required paths and stars are
x1,1x1,2x2,2x2,1, x5,2x2,2x3,2x3,1, x3,2x1,2x6,2x2,2 and
(x6,1;x1,1, x5,1, x6,2), (x5,1;x1,1, x3,1, x5,2), (x4,1;x3,1, x6,1, x4,2)
respectively.

5. p = 4, q = 2. The required paths and stars are
x1,1x1,2x2,2x2,1, x1,1x5,1x3,1x3,2, x5,1x5,2x2,2x3,2,
x3,2x1,2x6,2x2,2 and (x6,1;x1,1, x5,1, x6,2), (x4,1;x3,1, x6,1, x4,2)
respectively.

6. p = 5, q = 1. The required paths and stars are
x1,1x1,2x2,2x2,1, x3,2x1,2x6,2x2,2, x6,2x6,1x1,1x5,1,
x5,1x5,2x2,2x3,2, x6,1x5,1x3,1x3,2 and (x4,1;x3,1, x6,1, x4,2)
respectively.

7. p = 6, q = 0. The required paths are
x1,1x1,2x2,2x2,1, x3,2x1,2x6,2x2,2, x6,2x6,1x1,1x5,1,
x5,1x5,2x2,2x3,2, x4,2x4,1x3,1x3,2, x4,1x6,1x5,1x3,1.

Thus the graph K62K5 has a required decomposition.

Lemma 3.2. There exists a (3; p, q)-decomposition of K32K5, for every
admissible pair (p, q) of nonnegative integers with 3(p+ q) = |E(K32K5)|.
Proof. Let V (K32K5) = {xi,j : 1 ≤ i ≤ 3, 1 ≤ j ≤ 5}. First we decompose
K32K5 into 15S4 as follows:

{(x1,3;x2,3,x1,4, x1,5), (x1,1;x3,1, x1,4, x1,5)} ,
{(x2,2;x1,2, x2,3, x2,4), (x2,1;x3,1, x2,2, x2,3)} ,
{(x2,4;x1,4, x2,5, x2,1), (x2,3;x3,3, x2,4, x2,5)} ,
{(x3,2;x2,2, x3,3, x3,4), (x3,1;x3,2,x3,3, x3,5)} ,
{(x3,4;x2,4, x3,5, x3,1), (x3,3;x1,3, x3,4, x3,5)} ,
{(x2,5;x1,5, x2,1, x2,2), (x3,5;x1,5, x2,5, x3,2)} ,
{(x1,1;x2,1, x1,2, x1,3), (x1,2;x3,2, x1,3, x1,5), (x1,4;x3,4, x1,5, x1,2)} .

Now, the last 3S4 can be decomposed into either {1P4, 2S4} or {3P4} as
follows:

{x2,1x1,1x1,3x1,2, (x1,2;x3,2, x1,1, x1,5), (x1,4;x3,4, x1,5, x1,2)}
or

{x1,1x1,2x1,4x3,4, x2,1x1,1x1,3x1,2, x3,2x1,2x1,5x1,4} .
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By Remark 1.2, required number of paths and stars for remaining choices
of p and q can be obtained from the paired stars given above.

Lemma 3.3. There exists a (3; p, q)-decomposition of K32K6, for every
admissible pair (p, q) of nonnegative integers with 3(p+ q) = |E(K32K6)|.
Proof. Let V (K32K6) = {xi,j : 1 ≤ i ≤ 3, 1 ≤ j ≤ 6}. First we decompose
K32K6 into 21S4 as follows:

{(x3,4;x1,4, x3,2,x3,6), (x2,4;x1,4,x3,4, x2,1)} ,
{(x1,6;x3,6,x1,1, x1,2), (x1,5;x1,4,x1,1, x1,6)} ,
{(x1,3;x1,4, x1,5, x1,6), (x1,4;x1,2, x1,1, x1,6)} ,
{(x1,2;x2,2, x3,2, x1,3), (x1,1;x2,1, x1,3,x1,2)} ,
{(x3,4;x3,5, x3,3,x3,1), (x3,2;x3,1, x2,2, x3,3)} ,
{(x1,5;x1,2, x2,5, x3,5), (x2,5;x2,3,x2,1, x3,5)} ,
{(x3,6;x3,5,x3,2, x2,6), (x3,5;x3,3,x3,1, x3,2)} ,
{(x2,6;x1,6, x2,1, x2,4), (x2,3;x2,1,x2,6, x2,2)} ,
{(x2,5;x2,2, x2,4, x2,6), (x2,2;x2,1, x2,4, x2,6)} ,
{(x3,1;x1,1,x2,1, x3,6), (x3,3;x3,1,x3,6, x1,3), (x2,3;x1,3, x3,3, x2,4)} .

Now, the last 3S4 can be decomposed into either {1P4, 2S4} or {3P4} as
follows:

{x2,3x2,4x1,3x3,3, (x3,1;x1,1, x2,1, x3,6), (x3,3;x3,1, x3,6, x2,3))}
or {x2,3x2,4x1,3x3,3, x1,1x3,1x3,3x2,3, x2,1x3,1x3,6x3,3} .
By Remark 1.2, required number of paths and stars for remaining choices
of p and q can be obtained from the paired stars given above.

Lemma 3.4. There exists a (3; p, q)-decomposition of K42K6, for every
admissible pair (p, q) of nonnegative integers with 3(p+ q) = |E(K42K6)|.
Proof. Let V (K42K6) = {xi,j : 1 ≤ i ≤ 4, 1 ≤ j ≤ 6}.
We can write K42K6 = (6K4⊕3K6)⊕K6. First we decompose (6K4⊕3K6)
into 27S4 as follows:

{(x4,1;x3,1,x2,1, x1,1), (x3,1;x1,1,x2,1, x3,6)} ,
{(x4,2;x3,2, x2,2, x1,2), (x1,2;x2,2, x3,2, x1,3)} ,
{(x4,3;x3,3, x2,3, x1,3), (x2,3;x1,3, x3,3, x2,4)} ,
{(x4,4;x3,4, x2,4, x1,4), (x2,4;x1,4, x3,4, x2,1)} ,
{(x4,5;x3,5, x2,5, x1,5), (x1,5;x1,2,x2,5, x3,5)} ,
{(x4,6;x3,6, x2,6,x1,6), (x2,6;x1,6, x2,1, x2,4)} ,
{(x3,4;x1,4,x3,2, x3,6), (x3,6;x3,5, x3,2, x2,6)} ,
{(x1,6;x3,6,x1,1, x1,2), (x1,5;x1,4,x1,1, x1,6)} ,
{(x3,3;x3,1, x3,6, x1,3), (x3,5;x3,3,x3,1, x3,2)} ,
{(x3,4;x3,5, x3,3,x3,1), (x3,2;x3,1, x2,2, x3,3)} ,
{(x2,5;x2,3,x2,1, x3,5), (x2,3;x2,1, x2,6, x2,2)} ,
{(x2,5;x2,2, x2,4, x2,6), (x2,2;x2,1, x2,4, x2,6)} ,
{(x1,3;x1,4, x1,5, x1,6), (x1,4;x1,2, x1,1, x1,6), (x1,1;x2,1, x1,3, x1,2)} .

56



Now, the last 3S4 can be decomposed into either {1P4, 2S4} or {3P4} as
follows:

{x1,5x1,3x1,6x1,4, (x1,4;x1,2, x1,1, x1,3), (x1,1;x2,1, x1,3, x1,2)}
or

{x1,5x1,3x1,6x1,4, x1,3x1,1x1,2x1,4, x2,1x1,1x1,4x1,3} .

By Remark 1.2, required number of paths and stars for remaining choices
of p and q can be obtained from the paired stars given above. Hence
(6K4 ⊕ 3K6) has a (3; p, q)-decomposition. Also, by Theorem 1.2, K6 has
a (3; p, q)-decomposition. Hence by Remark 1.1, the graph K42K6 has the
desired decomposition.

Lemma 3.5. There exists a (3; p, q)-decomposition of K32K8, for every
admissible pair (p, q) of nonnegative integers with 3(p+ q) = |E(K32K8)|.
Proof. Let V (K32K8) = {xi,j : 1 ≤ i ≤ 3, 1 ≤ j ≤ 8}. First we decompose
K32K8 into 36S4 as follows:

{(x3,4;x1,4, x3,2, x3,6), (x2,4;x1,4, x3,4, x2,1)} ,
{(x1,6;x3,6, x1,1, x1,2), (x1,1;x2,1,x1,3, x1,2)} ,
{(x3,1;x1,1, x3,6, x2,1), (x3,3;x3,1,x3,6, x1,3)} ,
{(x2,3;x1,3,x3,3, x2,4), (x2,8;x2,6,x2,4, x2,3)} ,
{(x3,4;x3,5, x3,3, x3,1), (x3,2;x3,1, x2,2,x3,3)} ,
{(x1,5;x1,2, x2,5,x3,5), (x2,5;x2,3, x3,5, x2,1)} ,
{(x2,6;x1,6, x2,3, x2,5), (x2,2;x2,1,x2,3, x2,6)} ,
{(x2,1;x2,8,x2,3, x2,7), (x2,6;x2,7, x2,4, x2,1)} ,
{(x2,4;x2,2, x2,5, x2,7), (x2,5;x2,8,x2,2, x2,7)} ,
{(x1,7;x1,8, x2,7, x3,7), (x3,8;x3,7,x2,8, x1,8)} ,
{(x2,7;x3,7,x2,3, x2,2), (x2,8;x2,7, x1,8,x2,2)} ,
{(x3,7;x3,1,x3,2, x3,3), (x3,8;x3,1,x3,2, x3,3)} ,
{(x3,7;x3,4,x3,5, x3,6), (x3,8;x3,4, x3,5,x3,6)} ,
{(x1,2;x2,2, x3,2, x1,3), (x1,7;x1,1, x1,2, x1,3)} ,
{(x1,8;x1,1,x1,2, x1,3), (x1,4;x1,2, x1,1, x1,6)} ,
{(x1,3;x1,4, x1,5,x1,6), (x1,5;x1,4,x1,1, x1,6)} ,
{(x1,7;x1,4, x1,5, x1,6), (x1,8;x1,4,x1,5, x1,6)} ,
{(x3,6;x3,5,x3,2, x2,6), (x3,5;x3,3,x3,1, x3,2)} .

Now, the last 2S4 decompose into {1P4, 1S4} as follows:

{x2,6x3,6x3,2x3,5, (x3,5;x3,3, x3,1, x3,6)} .

By Remark 1.2, required number of paths and stars for remaining choices
of p and q can be obtained from the paired stars given above.
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Lemma 3.6. There exists a (3; p, q)-decomposition of K62K8, for every
admissible pair (p, q) of nonnegative integers with 3(p+ q) = |E(K62K8)|.
Proof. Let V (K62K8) = {xi,j : 1 ≤ i ≤ 6, 1 ≤ j ≤ 8}. We can write

K62 K8 = 6K6 ⊕ 6(K8\E(K2)) ⊕ (K6\ {P1,1, P1,2})
⊕ (K6\ {P2,1, P2,2}) ⊕ (P1,1 ⊕ P1,2 ⊕ P2,1 ⊕ P2,2 ⊕ 6K2),

where P1,1 = x3,1x4,1x6,1x5,1, P1,2 = x3,1x5,1x1,1x6,1, P2,1 = x3,2x1,2x2,2x5,2,
P2,2 = x1,2x6,2x2,2x3,2. Now, by Examples 1 and 2,

6(K8\E(K2)),K6\ {P1,1, P1,2} and K6\ {P2,1, P2,2}

have a (3; p, q)-decomposition. Also by Theorem 1.2, K6 has a (3; p, q)-de-
composition. We proved that (P1,1 ⊕ P1,2 ⊕ P2,1 ⊕ P2,2 ⊕ 6K2) has a
(3; p, q)-decomposition in Lemma 3.1. Hence K62K8 has a (3; p, q)-decom-
position.

Lemma 3.7. There exists a (3; p, q)-decomposition of K32K4, for every
admissible pair (p, q) of nonnegative integers with 3(p+ q) = |E(K32K4)|.
Proof. Let V (K32K4) = {xi,j : 1 ≤ i ≤ 3, 1 ≤ j ≤ 4}. First we decompose
K32K4 into 10S4 as follows:

{(x1,1;x1,4, x1,2, x1,3), (x1,2;x3,2, x1,3, x1,4)} ,
{(x1,4;x1,3,x2,4, x3,4), (x2,3;x2,2, x2,4, x1,3)} ,
{(x3,2;x2,2,x3,3, x3,4), (x3,4;x3,1, x3,3, x2,4)} ,
{(x2,2;x2,1, x1,2,x2,4), (x2,1;x1,1, x2,4, x2,3)} ,
{(x3,1;x1,1, x2,1, x3,2), (x3,3;x2,3, x1,3, x3,1)} .

From the last 4S4 we have either {3S4, 1P4} or {1S4, 3P4} or {4P4} as
follows:

{
x1,2x2,2x2,4x2,1, (x2,1;x1,1, x2,2, x2,3),
(x3,1;x1,1, x2,1, x3,2), (x3,3;x2,3, x1,3, x3,1)

}

or {
(x2,2;x2,1, x1,2, x2,4), x1,3x3,3x2,3x2,1,
x3,2x3,1x1,1x2,1, x3,3x3,1x2,1x2,4

}

or {
x1,3x3,3x2,3x2,1, x3,2x3,1x1,1x2,1,
x3,3x3,1x2,1x2,2, x1,2x2,2x2,4x2,1

}

By Remark 1.2, required number of paths and stars for remaining choices
of p and q can be obtained from the paired stars given above.

Lemma 3.8. There exists a (3; p, q)-decomposition of K42K4, for every
admissible pair (p, q) of nonnegative integers with 3(p+ q) = |E(K42K4)|.
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Proof. Let V (K42K4) = {xi,j : 1 ≤ i ≤ 4, 1 ≤ j ≤ 4}. First we decompose
K42K4 into 16S4 as follows:

{
(x1,3;x2,3, x3,3, x1,4), (x4,3;x1,3, x2,3,x3,3)

}
,{

(x2,2;x1,2, x2,3, x2,4), (x4,2;x1,2, x2,2, x3,2)
}
,{

(x4,1;x2,1, x4,3, x4,4), (x1,1;x2,1, x3,1, x4,1)
}
,{

(x4,4;x4,3,x2,4, x1,4), (x4,2;x4,1, x4,4, x4,3)
}
,{

(x1,2;x1,3, x1,4, x3,2), (x1,1;x1,2,x1,3, x1,4)
}
,{

(x2,4;x1,4,x3,4, x2,3), (x2,1;x2,2, x2,4, x2,3)
}
,{

(x3,4;x1,4, x3,1, x4,4), (x3,3;x2,3, x3,4,x3,1),
(x3,2;x2,2, x3,3, x3,4), (x3,1;x2,1, x4,1, x3,2)

}
.

From the last 4S4 we have either {3S4, 1P4} or {1S4, 3P4} or {4P4} as
follows:

{
(x3,2;x2,2, x3,3, x3,4), (x3,1;x2,1, x4,1, x3,2),
(x3,4;x1,4, x3,3, x4,4), x2,3x3,3x3,1x3,4

}

or {
(x3,1;x2,1, x3,4, x3,3), x2,2x3,2x3,1x4,1,
x1,4x3,4x3,2x3,3, x2,3x3,3x3,4x4,4

}

or {
x2,2x3,2x3,1x4,1, x2,3x3,3x3,4x4,4,
x3,4x3,2x3,3x3,1, x1,4x3,4x3,1x2,1

}
.

By Remark 1.2, required number of paths and stars for remaining choices
of p and q can be obtained from the paired stars given above.

Lemma 3.9. There exists a (3; p, q)-decomposition of K32K3, for every
admissible pair (p, q) of nonnegative integers with 3(p + q) = |E(K32K3)|
and p 6= 0.

Proof. Let V (K32K3) = {xi,j : 1 ≤ i ≤ 3, 1 ≤ j ≤ 3}. First we decompose
K32K3 into 5S4 and 1P4 as follows:

{(x3,2;x3,1, x2,2, x3,3), (x1,2;x2,2, x3,2, x1,3)} ,
{(x2,1;x1,1, x2,3, x2,2), (x2,3;x1,3,x3,3, x2,2)} ,
{(x1,1;x1,2, x1,3, x3,1), x1,3x3,3x3,1x2,1} .

The graphs in the last bracket has a P4 decomposition as {x1,1x1,3x3,3x3,1 ,
x2,1x3,1x1,1x1,2}. By Remark 1.2, required number of paths and stars for
remaining choices of p and q can be obtained from the paired stars given
above..
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Lemma 3.10. There exists a (3; p, q)-decomposition of K32K2, for every
admissible pair (p, q) of nonnegative integers with 3(p + q) = |E(K32K2)|
and p 6= 0.

Proof. Let V (K32K2) = {xi,j : 1 ≤ i ≤ 3, 1 ≤ j ≤ 2}. We prove K32K2

has a (3; p, q)-decomposition as follows:

1. p = 1, q = 2. The required paths and stars are x3,1x2,1x2,2x1,2 and
(x1,1;x1,2, x2,1, x3,1), (x3,2;x3,1, x2,2, x1,2) respectively.

2. p = 2, q = 1. The required paths and stars are x2,1x2,2x1,2x3,2,
x2,2x3,2x3,1x2,1 and (x1,1;x1,2, x2,1, x3,1) respectively.

3. p = 3, q = 0. The required paths are x3,2x3,1x1,1x2,1, x1,1x1,2x3,2x2,2,
x3,1x2,1x2,2x1,2.

Lemma 3.11. There exists a (3; p, q)-decomposition of K62K2, for every
admissible pair (p, q) of nonnegative integers with 3(p+ q) = |E(K62K2)|.
Proof. Let V (K62K2) = {xi,j : 1 ≤ i ≤ 6, 1 ≤ j ≤ 2}. We can write

K62K2 = (K6\ {P1,1, P1,2}) ⊕ (K6\ {P2,1, P2,2})
⊕ (P1,1 ⊕ P1,2 ⊕ P2,1 ⊕ P2,2 ⊕ 6K2),

where P1,1 = x3,1x4,1x6,1x5,1, P1,2 = x3,1x5,1x1,1x6,1, P2,1 = x3,2x1,2x2,2x5,2,
P2,2 = x1,2x6,2x2,2x3,2. Now, by Examples 1 and 2, K6\ {P1,1, P1,2} and
K6\ {P2,1, P2,2} have a (3; p, q)-decomposition. We can prove (P1,1 ⊕ P1,2 ⊕
P2,1 ⊕ P2,2 ⊕ 6K2) has a (3; p, q)-decomposition as in Lemma 3.1. Hence
K62K2 has a (3; p, q)-decomposition.

Theorem 3.12. The graph Km2Kn has a (3; p, q)-decomposition for every
admissible pair (p, q) of nonnegative integers with 3(p + q) = E(Km2Kn)
if and only if mn(m+ n− 2) ≡ 0 (mod 6).

Proof. Necessity. Since Km2Kn is (m+ n− 2)-regular with mn vertices,
the necessity follows from Lemma 2.5.
Sufficiency. To construct the required decomposition, we consider the
following two cases.

Case(1) m,n ≡ 0 or 1 (mod 3).

We can write Km2Kn = nKm ⊕mKn. By Theorem 1.2, Km and Kn

have a (3; p, q)-decomposition for m,n ≥ 6. For m,n < 6, Km2Kn has
a (3; p, q)-decomposition, by Lemmas 3.7 to 3.9.

Without loss of generality, assume that m < 6 and n > 6. To construct
the required decomposition, we consider the following four subcases.
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Subcase 1(i) m = 3 and n = 3k.

If n = 6l and l ∈ Z+, then we can write Km2Kn = l(K32K6) ⊕
3l(l−1)

2 K6,6. By Theorem 1.1 and Lemma 3.3, K6,6 and K32K6 have a
(3; p, q)-decomposition. Hence by Remark 1.1, Km2Kn has a (3; p, q)-
decomposition.

If n = 6l+ 3 and l ∈ Z+, then we can write Km2Kn = l(K32K6) ⊕
(K32K3) ⊕ 3l(l−1)

2 K6,6 ⊕ 3lK3,6. By Lemma 3.3 and Theo-
rem 1.1, K32K6, K6,6 and K3,6 have a (3; p, q)-decomposition. Also
by Lemma 3.9, K32K3 has a (3; p, q)-decomposition with p 6= 0.
Hence by Remark 1.1, Km2Kn has a (3; p, q)-decomposition with
p 6= 0. For p = 0, consider Km2Kn as (l−1)(K32K6) ⊕ (K32K9) ⊕
3(l−1)(l−2)

2 K6,6 ⊕ 3(l − 1)K6,9. By Lemma 3.3 and Theorem 1.1,
K32K6, K6,6 and K6,9 have a (3; p, q)-decomposition. So it is enough
to prove that K32K9 possess a S4-decomposition. Let V (K32K9) =
{xi,j : 1 ≤ i ≤ 3, 1 ≤ j ≤ 9}. Now,

(xi,j ;xi+1,j , xi,j+1xi,j+2),

where i = 1, 2, 3 and j = 1, 2, · · · , 9 and

(xi,1;xi,4, xi,5, xi,7), (xi,2;xi,6, xi,7, xi,8),

(xi,3;xi,7, xi,8, xi,9), (xi,4;xi,7, xi,8, xi,9),

(xi,5;xi,2, xi,8, xi,9), (xi,6;xi,1, xi,3, xi,9),

where i = 1, 2, 3 and the subscripts in the first coordinate are taken
modulo 3 with residues {1, 2, 3} and the subscripts in the second coor-
dinate are taken modulo 9 with residues {1, 2, · · · , 9}, gives a required
S4-decomposition of K32K9. Hence by Remark 1.1, Km2Kn has a
(3; p, q)-decomposition.

Subcase 1(ii) m = 3 and n = 3k + 1.

If n = 7, then we can write Km2Kn = (K32K4) ⊕ (K32K3) ⊕
3K3,4. By Lemma 3.7 and Theorem 1.1, K32K4 and K3,4 have a
(3; p, q)-decomposition. Also by Lemma 3.9, K32K3 has a (3; p, q)-
decomposition with p 6= 0. Hence by Remark 1.1, Km2Kn has a
(3; p, q)-decomposition with p 6= 0. For p = 0 the S4-decomposition
of K32K7 with

V (K32K7) = {xi,j : 1 ≤ i ≤ 3, 1 ≤ j ≤ 7}

is given below.
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(x1,1;x1,2, x2,1, x3,1), (x3,1;x2,1, x3,1, x3,2), (x1,2;x2,2, x1,3, x1,4),
(x3,2;x2,2, x1,2, x3,3), (x1,3;x1,4, x2,3, x3,3), (x3,3;x2,3, x3,4, x3,5),
(x1,4;x2,4, x1,1, x1,5), (x3,4;x3,5, x1,4, x2,4), (x1,5;x1,2, x1,6, x2,5),
(x1,6;x1,2, x1,4, x2,6), (x1,7;x1,2, x1,6, x2,7), (x2,5;x2,6, x2,7, x3,5),
(x2,6;x2,4, x2,7, x3,6), (x2,7;x2,3, x2,4, x3,7), (x3,5;x3,2, x3,6, x1,5),
(x3,6;x3,3, x3,4, x1,6), (x3,7;x3,5, x3,6, x1,7), (x1,1;x1,5, x1,6, x1,7),
(x1,3;x1,1, x1,5, x1,6), (x1,7;x1,3, x1,4, x1,5), (x2,1;x2,3, x2,6, x2,7),
(x2,2;x2,1, x2,6, x2,7), (x2,3;x2,2, x2,4, x2,6), (x2,4;x2,1, x2,2, x2,5),
(x2,5;x2,1, x2,2, x2,3), (x3,1;x3,4, x3,5, x3,6), (x3,2;x3,4, x3,6, x3,7),
(x3,7;x3,1, x3,3, x3,4).

If n = 6l + 1 and l ≥ 2 is an integer, then we can write

Km2Kn = (K32K6(l−1)+3) ⊕ (K32K4) ⊕ 3K6(l−1)+3,4.

By Lemma 3.7 and Theorem 1.1, K32K4 and K6(l−1)+3,4 have a
(3; p, q)-decomposition. Also by Subcase 1(i), K32K6(l−1)+3 has a
(3; p, q)-decomposition. Hence by Remark 1.1, Km2Kn has a (3; p, q)-
decomposition.

If n = 6l + 4 and l ≥ 1 is an integer, then we can write Km2Kn =
(K32K6l) ⊕ (K32K4) ⊕ 3K6l,4. By Lemma 3.7 and Theorem 1.1,
K32K4 and K6l,4 have a (3; p, q)-decomposition. Also by Subcase
1(i), K32K6l has a (3; p, q)-decomposition. Hence by Remark 1.1,
Km2Kn has a (3; p, q)-decomposition.

Subcase 1(iii) m = 4 and n = 3k.

We can write

Km2Kn = k(K42K3) ⊕ 2k(k − 1)K3,3.

By Theorem 1.1 and Lemma 3.7, K3,3 and K42K3 have a (3; p, q)-
decomposition. Hence by Remark 1.1, Km2Kn has a (3; p, q)-decom-
position.

Subcase 1(iv) m = 4 and n = 3k + 1.

We can write

Km2Kn = (k − 1)(K42K3)⊕ (K42K4)

⊕ 2(k − 1)(k − 2)K3,3 ⊕ 4(k − 1)K3,4.

By Theorem 1.1, K3,3 and K3,4 have a (3; p, q)-decomposition. Also
by Lemmas 3.7 and 3.8, K42K3 and K42K4 have a (3; p, q)-decompo-
sition. Hence by Remark 1.1, Km2Kn has a (3; p, q)-decomposition.

Case(2) m ≡ 0 (mod 3), n ≡ 2 (mod 3).
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We can write
Km2Kn = nKm ⊕ mKn.

To construct the required decomposition, we consider the following four
subcases.

Subcase 2(i) m ≡ 0 (mod 6), n ≡ 5 (mod 6).

Let m = 6k, k ∈ Z+ and n = 6l + 5, l ≥ 0 be an integer. We can
write

Km2Kn = (K6k2K6l) ⊕ (K6k2K5) ⊕ 6kK6l,5 =

(K6k2K6l) ⊕ k(K62K5) ⊕ 5k(k − 1)

2
K6,6 ⊕ 6kK6l,5.

By Lemma 3.1 and Theorem 1.1, K62K5, K6,6 and K6l,5 have a
(3; p, q)-decomposition. Also by Case 1, K6k2K6l has a (3; p, q)-de-
composition. Hence by Remark 1.1, Km2Kn has a (3; p, q)-decom-
position.

Subcase 2(ii) m ≡ 0 (mod 6), n ≡ 2 (mod 6).

When m = 6k, k ∈ Z+ and n = 2, Km2Kn = k(K62K2) ⊕ k(k −
1)K6,6. By Theorem 1.1 and Lemma 3.11, Km2Kn has a (3; p, q)-
decomposition. When n > 2, let m = 6k, n = 6l + 2, k, l ∈ Z+. We
can write

Km2Kn = (K6k2K6(l−1)) ⊕ (K6k2K8) ⊕ 6kK6(l−1),8
= (K6k2K6(l−1)) ⊕ k(K62K8) ⊕ 4k(k − 1)K6,6 ⊕ 6kK6(l−1),8

By Theorem 1.1 and Lemma 3.6, K6,6, K6(l−1),8 and K62K8 have a
(3; p, q)-decomposition. Also by Case 1, K6k2K6(l−1) has a (3; p, q)-
decomposition. Hence by Remark 1.1, Km2Kn has a (3; p, q)-decom-
position.

Subcase 2(iii) m ≡ 3 (mod 6), n ≡ 5 (mod 6).

Let m = 6k + 3 and n = 6l + 5, k, l ≥ 0 be integers. We can write

Km2Kn = (K6k+32K6l) ⊕ (K6k+32K5) ⊕ (6k + 3)K6l,5

= (K6k+32K6l) ⊕ k(K62K5) ⊕ (K32K5)

⊕ 5k(k − 1)

2
K6,6 ⊕ 5kK3,6 ⊕ (6k + 3)K6l,5.

By Lemmas 3.1, 3.2, 3.3 and Theorem 1.1, K62K5, K32K6, K32K5,
K6,6, K3,6 and K6l,5 have a (3; p, q)-decomposition. Also by Case
1, K6k+32K6l has a (3; p, q)-decomposition. Hence by Remark 1.1,
Km2Kn has a (3; p, q)-decomposition.
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Subcase 2(iv) m ≡ 3 (mod 6), n ≡ 2 (mod 6).

When m = 3 and n = 2, Km2Kn has a (3; p, q)-decomposition, by
Lemma 3.10.

When m = 6k + 3 with k ∈ Z+ and n = 2, Km2Kn = (K6k2K2) ⊕
(K32K2) ⊕ 2K6k,3. By Theorem 1.1 and Subcase 2(ii), K6k,3 and
K6k2K2 have a (3; p, q)-decomposition. Also by Lemma 3.11, K32K2

has a (3; p, q)-decomposition with p 6= 0. Hence by Remark 1.1,
Km2Kn has a (3; p, q)-decomposition with p 6= 0. For p = 0, consider
Km2Kn as (K6(k−1)2K2)⊕ (K92K2)⊕ 2K(6k−1),3. By Theorem 1.1
and Subcase 2(ii), K6(k−1),3 and K6(k−1)2K2 have a (3; p, q)-decom-
position. So it is enough to prove that K92K2(∼= K22K9) has a S4-
decomposition. Consider K22K9 as 9K2 ⊕ 2K9 = (9K2 ⊕K9) ⊕K9.
Now, K9 has a S4-decomposition, by Theorem 1.2 with p = 0. Let
V (K22K9) = {xi,j : 1 ≤ i ≤ 2, 1 ≤ j ≤ 9}. Now,

(x1,1;x1,4, x1,5, x1,7), (x1,2;x1,6, x1,7, x1,8),
(x1,3;x1,7, x1,8, x1,9), (x1,4;x1,7, x1,8, x1,9),
(x1,5;x1,2, x1,8, x1,9), (x1,6;x1,1, x1,3, x1,9)

and (x1,j ;x2,j , x1,j+1x1,j+2), for j = 1, 2, · · · , 9, where the subscripts
in the second coordinate are taken modulo 9 with residues {1, 2, · · · , 9},
gives the S4-decomposition of 9K2 ⊕ K9. Hence Km2Kn has a
(3; p, q)-decomposition.

When n > 2, let m = 6k + 3 and n = 6l + 2, where k ≥ 0, l > 0 are
integers. We can write

Km2Kn = (K6k2K6l+2) ⊕ (K32K(6l+2)) ⊕ (6l + 2)K3,6k

= (K6k2K6l+2) ⊕ (K32K6(l−1)) ⊕ (K32K8)

⊕ 3K6(l−1),8 ⊕ (6l + 2)K3,6k.

By Lemma 3.5 and Theorem 1.1, K32K8, K6(l−1),8 and K3,6k have a
(3; p, q)-decomposition. Also by Case 1 and Subcase 2(ii), K32K6(l−1)
and K6k2K6l+2 have a (3; p, q)-decomposition. Hence by Remark 1.1,
Km2Kn has a (3; p, q)-decomposition.

4 (3; p, q)-decomposition of Km × Kn

In this section we investigate the existence of (3; p, q)-decomposition of ten-
sor product of complete graphs.

Lemma 4.1. Let G be an S4-decomposible graph and p, q ≥ 0 be integers
with 3(p + q) = |E(G×Kn)| and p 6= 1. Then G ×Kn has a (3; p, q)-de-
composition for all odd n and every admissible pair (p, q).
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Proof. Let V (G ×Kn) = {xg,i : g ∈ V (G) and 1 ≤ i ≤ n}. Since G is S4-
decomposible graph, for each star (a;u, v, w) in G, we have the following
pair of stars in G×Kn:

• for each j ∈ {1, 3, · · · , n− 2}

{(xa,j ;xu,i,xv,i, xw,i), (xa,j+1;xu,i, xv,i,xw,i)} ,

where 1 ≤ i ≤ n and i 6= j, j + 1;

• for 1 ≤ i ≤ n− 1,

{(xa,n;xu,i−1,xv,i−1, xw,i−1), (xa,i;xu,i−1,xv,i−1, xw,i−1)} ,

if i is even and

{(xa,n;xu,i+1,xv,i+1, xw,i+1), (xa,i;xu,i+1,xv,i+1, xw,i+1)} ,

if i is odd.

Then by applying remark 1.2 to the pairs of stars mentioned above we
obtained all possible even number of paths and stars of G × Kn. Now,
consider{(xa,1;xu,2, xv,2, xw,2), (xa,1;xu,3, xv,3, xw,3), (xa,2;xu,3, xv,3, xw,3)}
and decompose it into 3P4 as given below. {xu,2xa,1xu,3xa,2, xv,2xa,1xv,3xa,2,
xw,2xa,1xw,3xa,2}. The remaining number of paths and stars can be ob-
tained from the remaining pairs of stars given above except when p = 1.

Lemma 4.2. There exists a (3; p, q)-decomposition of K3 ×K3, for every
admissible pair (p, q) of nonnegative integers with 3(p+q) = |E(K3 ×K3)|.
Proof. Let V (K3×K3) = {xi,j : 1 ≤ i ≤ 3, 1 ≤ j ≤ 3}. Now, K3×K3 has
a (3; p, q)-decomposition as follows:

1. p = 0, q = 6. The required stars are
(x1,1;x2,2, x2,3, x3,3), (x1,2;x2,1, x2,3, x3,1), (x1,3;x2,1, x2,2, x3,2),
(x3,1;x1,3, x2,2, x2,3), (x3,2;x1,1, x2,1, x2,3), (x3,3;x1,2, x2,1, x2,2).

2. p = 1, q = 5. The required path and stars are
x2,2x1,1x2,3x1,2 and (x2,1;x1,2, x3,2, x3,3), (x1,3;x2,1, x2,2, x3,1),
(x3,1;x1,2, x2,2, x2,3), (x3,2;x1,1, x1,3, x2,3), (x3,3;x1,2, x1,1, x2,2)
respectively.

3. p = 2, q = 4. The required paths and stars are
x3,3x1,1x2,3x1,2, x1,1x2,2x3,3x1,2 and (x2,1;x1,2, x3,2, x3,3),
(x1,3;x2,1, x2,2, x3,1), (x3,1;x1,2, x2,2, x2,3), (x3,2;x1,1, x1,3, x2,3)
respectively.
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4. p = 3, q = 3. The required paths and stars are
x3,3x1,1x2,3x1,2, x2,2x3,3x1,2x3,1, x2,3x3,1x2,2x1,1 and
(x2,1;x1,2, x3,2, x3,3), (x1,3;x2,1, x2,2, x3,1), (x3,2;x1,1, x1,3, x2,3)
respectively.

5. p = 4, q = 2. The required paths and stars are
x3,3x1,1x2,3x1,2, x2,2x3,3x1,2x3,1, x3,1x2,2x1,1x3,2,
x3,1x2,3x3,2x1,3 and (x2,1;x1,2, x3,2, x3,3), (x1,3;x2,1, x2,2, x3,1)
respectively.

6. p = 5, q = 1. The required paths and star are
x3,3x1,1x2,3x1,2, x2,2x3,3x1,2x3,1, x3,1x2,2x1,1x3,2,
x2,3x3,2x1,3x2,2 x2,1x1,3x3,1x2,3 and (x2,1;x1,2, x3,2, x3,3)
respectively.

7. p = 6, q = 0. The required paths are
x1,1x2,3x1,2x2,1, x3,2x2,1x3,3x1,1, x2,2x3,3x1,2x3,1,
x3,1x2,2x1,1x3,2, x2,3x3,2x1,3x2,2 x2,1x1,3x3,1x2,3.

Lemma 4.3. There exists a (3; p, q)-decomposition of K3 ×K4, for every
admissible pair (p, q) of nonnegative integers with 3(p+q) = |E(K3 ×K4)|.
Proof. Let V (K3×K4) = {xi,j : 1 ≤ i ≤ 3, 1 ≤ j ≤ 4}. First we decompose
K3 ×K4 into 12S4 as follows:

{(x1,1;x2,2, x2,3, x2,4), (x1,2;x2,1,x2,3, x2,4)} ,
{(x2,1;x3,2, x3,3, x3,4), (x2,2;x3,1,x3,3, x3,4)} ,
{(x2,3;x3,1,x3,2, x3,4), (x2,4;x3,1,x3,2, x3,3)} ,
{(x3,3;x1,1,x1,2, x1,4), (x3,4;x1,1,x1,2, x1,3)} ,
{(x3,1;x1,2, x1,3, x1,4), (x3,2;x1,1,x1,3, x1,4)} ,
{(x1,3;x2,1,x2,2, x2,4), (x1,4;x2,1,x2,2, x2,3)} .

Now, the last 3S4 can be decomposed into 3P4 as follows:

{x1,1x3,2x1,3x2,4, x3,2x1,4x2,1x1,3, x1,3x2,2x1,4x2,3} .

Decomposition for the remaining choices of p 6= 1 can be obtained from the
paired stars given above, by Remark 1.2. When p = 1, the required path
and stars are

(x1,1;x3,3, x2,3, x3,2), (x2,4;x1,1, x1,2, x3,3), (x2,1;x1,2, x1,3, x1,4),
(x2,3;x1,2, x1,4, x3,2), (x2,1;x3,2, x3,3, x3,4), (x3,1;x2,2, x2,3, x2,4),
(x3,1;x1,2, x1,3, x1,4), (x3,2;x1,3, x1,4, x2,4), (x3,3;x2,2, x1,2, x1,4),
(x1,3;x2,2, x3,4, x2,4), (x3,4;x2,2, x1,2, x2,3), x3,4x1,1x2,2x1,4.

66



Lemma 4.4. There exists a (3; p, q)-decomposition of K3 ×K5, for every
admissible pair (p, q) of nonnegative integers with 3(p+q) = |E(K3 ×K5)|.
Proof. Let V (K3×K5) = {xi,j : 1 ≤ i ≤ 3, 1 ≤ j ≤ 5}. First we decompose
K3 ×K5 into 20S4 as follows:

{(x1,1;x2,2,x2,3, x2,4), (x1,3;x2,1, x2,2,x2,4)} ,
{(x1,1;x3,2,x3,3, x3,4), (x1,3;x3,1, x3,2,x3,4)} ,
{(x1,4;x2,1,x2,5, x2,2), (x1,5;x2,1,x2,2, x2,4)} ,
{(x1,4;x3,1,x3,2, x3,5), (x1,5;x3,1,x3,2, x3,4)} ,
{(x2,3;x1,4,x1,5, x3,1), (x3,3;x1,4,x1,5, x2,1)} ,
{(x2,5;x1,1, x1,2, x1,3), (x3,5;x1,1,x1,2, x1,3)} ,
{(x2,1;x3,2, x3,4, x3,5), (x2,2;x3,1,x3,4, x3,5)} ,
{(x2,4;x3,1,x3,2, x3,5), (x2,5;x3,1,x3,2, x3,4)} ,
{(x2,3;x3,2, x3,4, x3,5), (x3,3;x2,2, x2,4, x2,5)} ,
{(x1,2;x2,1, x2,3, x2,4), (x1,2;x3,1, x3,3, x3,4)} .

Now, the last 4S4 can be decomposed into either {1P4, 3S4} or {2P4, 2S4}
or {3P4, 1S4} or {4P4} as follows:

{
x3,3x1,2x3,4x2,3, (x2,3;x3,2, x1,2, x3,5),
(x3,3;x2,2, x2,4, x2,5), (x1,2;x2,1, x3,1, x2,4)

}

or {
x2,2x3,3x1,2x3,1, x2,5x3,3x2,4x1,2,
(x2,3;x3,2, x3,4, x3,5), (x1,2;x2,1, x2,3, x3,4)

}

or {
x2,2x3,3x1,2x3,1, x2,5x3,3x2,4x1,2,
x2,3x3,4x1,2x2,1, (x2,3;x3,2, x1,2, x3,5)

}

or {
x2,2x3,3x1,2x3,1, x2,5x3,3x2,4x1,2,
x3,2x2,3x3,4x1,2, x2,1x1,2x2,3x3,5

}
.

By Remark 1.2, required number of paths and stars for the remaining
choices of p and q can be obtained from the paired stars given above.

Lemma 4.5. There exists a (3; p, q)-decomposition of K3 ×K6, for every
admissible pair (p, q) of nonnegative integers with 3(p+q) = |E(K3 ×K6)|.
Proof. We can write K3×K6 = (K3×K3) ⊕ (K3×K3) ⊕ (K3×K3,3). By
Theorem 1.1 and Lemma 4.1, K3×K3,3(∼= K3,3×K3) has a (3; p, q)-decom-
position with p 6= 1. Also, by Lemma 4.2, we have a (3; p, q)-decomposition
of K3 × K3. Hence by Remark 1.1, the graph K3 × K6 has the desired
decomposition.
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Lemma 4.6. There exists a (3; p, q)-decomposition of K3 ×K8, for every
admissible pair (p, q) of nonnegative integers with 3(p+q) = |E(K3 ×K8)|.
Proof. We know that K3 × K8 = K8,8,8\E(8K3). Let V (K8,8,8) = X(=
{x1,j : 1 ≤ j ≤ 8}) ∪ Y (= {x2,j : 1 ≤ j ≤ 8}) ∪ Z(= {x3,j : 1 ≤ j ≤ 8}) and
X = X1∪X2, Y = Y1∪Y2, Z = Z1∪Z2, whereX1 = {x1,j : 1 ≤ j ≤ 4} , X2 =
{x1,j : 5 ≤ j ≤ 8} , Y1 = {x2,j : 1 ≤ j ≤ 4} , Y2 = {x2,j : 5 ≤ j ≤ 8} , Z1 =
{x3,j : 1 ≤ j ≤ 4} , Z2 = {x3,j : 5 ≤ j ≤ 8}. We can view K3 × K8 as
(KX1,Y1,Z1\E(4K3)) ⊕ (KX2,Y2,Z2\E(4K3)) ⊕ KX1,Y2 ⊕ KY2,Z1 ⊕
KZ1,X2

⊕ KX2,Y1
⊕ KY1,Z2

⊕ KZ2,X1
. Hence K3 × K8 = G1 ⊕ G2,

where G1
∼= G2

∼= (K4,4,4\E(4K3) ⊕ KX1,Y2
⊕ KY2,Z1

⊕ KZ1,X2
). Now,

K4,4,4\E(4K3) = K3 × K4 has a (3; p, q)-decomposition, by Lemma 4.3.
Further KX1,Y2 ⊕ KY2,Z1 ⊕ KZ1,X2 can be decomposed into 16S4 as
follows:

{(x1,3;x2,5, x2,6, x2,8), (x3,1;x2,6, x2,7, x2,8)} ,
{(x2,8;x1,2,x1,4, x3,2), (x2,5;x3,1, x1,2,x1,4)} ,
{(x2,5;x1,1, x3,2, x3,3), (x1,5;x3,1,x3,2, x3,3)} ,
{(x2,7;x1,3, x3,3, x1,1), (x2,8;x3,4,x3,3, x1,1)} ,
{(x3,1;x1,6, x1,7, x1,8), (x3,2;x1,6,x1,7, x1,8)} ,
{(x3,3;x1,6, x1,7, x1,8), (x3,4;x1,6,x1,7, x1,8)} ,
{(x2,6;x1,2,x3,2, x3,3), (x2,7;x1,2, x1,4,x3,2)} ,
{(x3,4;x2,7, x2,5, x1,5), (x2,6;x1,1, x1,4, x3,4)} .

From the last 4S4 we have either {1P4, 3S4} or {3P4, 1S4} or {4P4} as
follows:

{
x2,7x1,4x2,6x1,1, (x2,6;x1,2, x3,2, x3,3),
(x3,4;x2,6, x2,5, x1,5), (x2,7;x1,2, x3,4, x3,2)

}

or
{
x2,7x1,4x2,6x1,1, x2,6x1,2x2,7x3,4,
x3,3x2,6x3,2x2,7, (x3,4;x2,6, x2,5, x1,5)

}

or
{
x2,7x1,4x2,6x1,1, x3,3x2,6x3,2x2,7,
x1,2x2,7x3,4x2,5, x1,2x2,6x3,4x1,5

}
.

By Remark 1.2, required number of paths and stars for the remaining
choices of p and q can be obtained from the paired stars given above.

Theorem 4.7. The graph Km×Kn has a (3; p, q)-decomposition for every
admissible pair (p, q) of nonnegative integers with 3(p+ q) = E(Km ×Kn)
if and only if mn(m−1)(n−1) ≡ 0 (mod 6), (p, q) = (2, 0) when (m,n) =
(2, 3) or (m,n) = (3, 2) and p 6= 1 when (m,n) = (2, 4) or (m,n) = (4, 2).

Proof. When m = 2 and n = 3, 4 or m = 3, 4 and n = 2, the result follows
from Theorem 2.6.
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Necessity. Since Km×Kn is (n− 1)(m− 1)-regular with mn vertices, the
necessity follows from Lemma 2.5.

Sufficiency. To construct the required decomposition, we consider the
following two cases.

Case(1) n ≡ 0 or 1 (mod 3).

The graph Km×Kn can be viewed as edge-disjoint union of m(m−1)/2
copies of Kn,n − I. Since n ≡ 0 or 1 (mod 3), by Theorem 2.6, the
graph Kn,n − I has a (3; p, q)-decomposition except when (n, p) = (4, 1)
or when n = 3 and q > 0. Hence by Remark 1.1, the graph Km×Kn has
the desired decomposition except (n, p) = (4, 1) and q > 0 when n = 3.
We prove the required decomposition for (n, p) = (4, 1) and q > 0 when
n = 3 in two subcases.

Subcase 1(i) m ≡ 0 or1 (mod 3).

Since Km × Kn
∼= Kn × Km, the graph Kn × Km can be viewed as

edge-disjoint union of n(n− 1)/2 copies of Km,m − I. Since m ≡ 0 or 1
(mod 3), by Theorem 2.6, the graph Km,m − I has a (3; p, q)-decom-
position except when (m, p) = (4, 1) and m = 3, q > 0. Hence by
Remark 1.1, the graph Km ×Kn has the desired decomposition except
when (m, p) = (4, 1) and q > 0 when m = 3. Here K3×K3 and K3×K4

have a (3; p, q)-decomposition, by Lemmas 4.2 and 4.3. So it is enough
to prove the required decomposition for (m,n, p) = (4, 4, 1). We can
write K4 × K4 = (K3 × K4) ⊕ (S4 × K4). By Remark 1.3, S4 × K4

has an S4-decomposition. Also, by Lemma 4.3, K3 ×K4 has a (3; p, q)-
decomposition and hence by Remark 1.1, the graph K4 × K4 has the
desired decomposition.

Subcase 1(ii) m ≡ 2 (mod 3).

When n = 4, if m = 6k + 2, k ∈ Z+, then Km × K4 = (K8 × K4) ⊕
(K6(k−1)×K4) ⊕ (K8,6(k−1)×K4) = (K8×S4) ⊕ (K8×K3) ⊕ (K6(k−1)×
K4) ⊕ (K8,6(k−1)×K4). By Theorem 1.1 and Remark 1.3, K8×S4 and
K8,6(k−1)×K4 have an S4-decomposition. Also by Lemma 4.6, K8×K3

has a (3; p, q)-decomposition. Since K6(k−1) ×K4 has a (3; p, q)-decom-
position (by Subcase 1(i)), by Remark 1.1, the graph Km ×K4 has the
desired decomposition.

If m = 6k+ 5, k ≥ 0 is an integer, then Km×K4 = (K5×K4)⊕ (K6k ×
K4)⊕(K5,6k×K4) = (K5×S4) ⊕ (K5×K3) ⊕ (K6k×K4) ⊕ (K5,6k×K4).
By Theorem 1.1 and Remark 1.3, K5 × S4 and K5,6k ×K4 have a S4-
decomposition. Also by Lemma 4.4, K5 ×K3 has a (3; p, q)-decomposi-
tion. Since K6k ×K4 has a (3; p, q)-decomposition (by Subcase 1(i)), by
Remark 1.1, the graph Km ×K4 has the desired decomposition.
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When n = 3, if m = 6k+2, k ∈ Z+, Km×K3 = (K8×K3) ⊕ (K6(k−1)×
K3) ⊕ (K6(k−1),8 × K3). By Lemma 4.6, K8 × K3 has a (3; p, q)-de-
composition and by Theorem 1.1 and Lemma 4.1, K6(k−1),8 ×K3 has a
(3; p, q)-decomposition with p 6= 1. Since K6(k−1)×K3 has a (3; p, q)-de-
composition (by Subcase 1(i)), by Remark 1.1, the graph Km ×K3 has
the desired decomposition with p 6= 1. For p = 1, the required decom-
position can be obtained from a (3; 1, q)-decomposition of K8 ×K3 and
(3; 0, q)-decomposition of the remaining graphs.

If m = 6k+5, k ≥ 0 is an integer, Km×K3 = (K5×K3) ⊕ (K6k×K3) ⊕
(K6k,5×K3). By Lemma 4.4, K5×K3 has a (3; p, q)-decomposition and
by Theorem 1.1 and Lemma 4.1, K6k,5 × K3 has a (3; p, q)-decompo-
sition with p 6= 1. Since K6k × K3 has a (3; p, q)-decomposition, by
Remark 1.1, the graph Km × K3 has the desired decomposition with
p 6= 1. For p = 1, the required decomposition can be obtained from
a (3; 1, q)-decomposition of K5 × K3 and (3; 0, q)-decomposition of the
remaining graphs.

Case(2) m ≡ 0 or 1 (mod 3) and n ≡ 2 (mod 3).

Since tensor product is commutative, Km ×Kn
∼= Kn ×Km. By Case

1, Kn ×Km has a (3; p, q)-decomposition.

5 (3; p, q)-decomposition of Km ⊗ Kn

In this section we obtain the existence of (3; p, q)-decomposition of complete
multipartite graph as follows:

Lemma 5.1. The graph K3 ⊗K2 has a (3; p, q)-decomposition, for every
admissible pair (p, q) of nonnegative integers with 3(p+q) =

∣∣E(K3 ⊗K2)
∣∣.

Proof. Let V (K3⊗K2) = {xi,j : 1 ≤ i ≤ 3, 1 ≤ j ≤ 2}. Now, K3⊗K2 has
a (3; p, q)-decomposition as follows:

1. p = 0, q = 4. The required stars are
(x1,1;x2,1, x2,2, x3,2), (x1,2;x2,1, x2,2, x3,1), (x3,1;x1,1, x2,1, x2,2),
(x3,2;x1,2, x2,1, x2,2).

2. p = 1, q = 3. The required path and stars are
x3,1x2,1x3,2x2,2 and (x1,1;x3,2, x2,1, x3,1), (x1,2;x3,1, x2,1, x3,2),
(x2,2;x1,1, x1,2, x3,1) respectively.

3. p = 2, q = 2. The required paths and stars are
x3,1x2,1x3,2x1,2, x3,2x2,2x3,1x1,1 and (x1,1;x2,1, x2,2, x3,2),
(x1,2;x2,1, x2,2, x3,1) respectively.
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4. p = 3, q = 1. The required paths and star are
x1,1x3,1x1,2x2,1, x1,2x3,2x1,1x2,1, x3,1x2,1x3,2x2,2 and
(x2,2;x1,1, x1,2, x3,1) respectively.

5. p = 4, q = 0. The required paths are
x1,1x3,1x1,2x2,1, x1,2x3,2x1,1x2,1, x2,1x3,2x2,2x1,2,
x1,1x2,2x3,1x2,1.

Lemma 5.2. The graph K3 ⊗K3 has a (3; p, q)-decomposition, for every
admissible pair (p, q) of nonnegative integers with 3(p+q) =

∣∣E(K3 ⊗K3)
∣∣.

Proof. Let V (K3 ⊗ K3) = {xi,j : 1 ≤ i, j ≤ 3}. Since K3 ⊗ K3 = 3K3,3,
K3 ⊗ K3 has a (3; p, q)-decomposition with p 6= 1, by Theorem 1.1. For
p = 1, the required path and stars are
x2,1x1,2x2,3x3,2, (x1,1;x2,1, x2,2, x2,3), (x1,1;x3,1, x3,2, x3,3),
(x1,2;x3,1, x3,2, x2,2), (x1,3;x3,1, x3,2, x2,2), (x2,1;x3,1, x3,2, x1,3),
(x2,2;x3,1, x3,2, x3,3), (x2,3;x3,1, x3,3, x1,3), (x3,3;x1,2, x1,3, x2,1).

Lemma 5.3. The graph K3 ⊗K4 has a (3; p, q)-decomposition, for every
admissible pair (p, q) of nonnegative integers with 3(p+q) =

∣∣E(K3 ⊗K4)
∣∣.

Proof. Since K3 ⊗K4 = K4,4,4, let V (K4,4,4) = V1 ∪ V2 ∪ V3, where Vi =
V 1
i (= {xi,1, xi,2}) ∪ V 2

i (= {xi,3, xi,4}). We can view K4,4,4 as (K3 ⊗
K2) ⊕ (K3 ⊗ K2) ⊕i6=j∈{1,2,3} KV 1

i ,V 2
j

. Now, ⊕i6=j∈{1,2,3}KV 1
i ,V 2

j
has a

S4-decomposition as follows: {(xi,1;x2,3,x2,4, xj,3), (xi,2;x2,3,x2,4, xj,4)},
{(xi,3;x2,1,x2,2, xj,2), (xi,4;x2,1,x2,2, xj,1)}, i = 1, j = 3 and i = 3, j =
1. By Remark 1.2, we can use these pairs of stars to construct the required
decomposition into an even number of paths and stars. For odd p and q, we
decompose K3 ⊗K2 into odd number of paths and stars using Lemma 5.1.
Hence by Remark 1.1, the graphK3⊗K4 has the desired decomposition.

Lemma 5.4. Let G be an S4-decomposible graph and p, q ≥ 0 be integers
with 3(p + q) =

∣∣E(G⊗Kn)
∣∣ and p 6= 1. Then G ⊗Kn has a (3; p, q)-de-

composition for all even n and every admissible pair (p, q).

Proof. Since G is S4-decomposible graph, for each star (a;u, v, w) in G, we
have the following pairs of stars in G⊗Kn; for each j ∈ {1, 3, · · · , n− 1},
{(xa,j ;xu,i,xv,i, xw,i), (xa,j+1;xu,i, xv,i,xw,i)}, where 1 ≤ i ≤ n. Then
by applying remark 1.2 to the pairs of stars mentioned above we obtained
all possible even number of paths and stars of G⊗Kn. Now, consider

{(xa,1;xu,1, xv,1, xw,1), (xa,1;xu,2, xv,2, xw,2), (xa,2;xu,1, xv,1, xw,1)}

and decompose it into 3P4 as given below. {xu,2xa,1xu,1xa,2, xv,2xa,1xv,1xa,2,
xw,2xa,1xw,1xa,2}. The remaining number of paths and stars can be ob-
tained from the remaining pairs of stars given above except when p = 1.
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Theorem 5.5. Let p and q be nonnegative integers, and let n > 1. Then
Km ⊗Kn has a (3; p, q)-decomposition for every admissible pair (p, q) with
3(p+ q) = E(Km⊗Kn) if and only if mn2(m− 1) ≡ 0 (mod 6) and p 6= 1
when (m,n) = (2, 3).

Proof. When (m,n) = (2, 3), the result follows from Theorem 1.1.

Necessity. Since Km ⊗ Kn is n(m − 1)-regular with mn vertices, the
necessity follows from Lemma 2.5.

Sufficiency. To construct the required decomposition, we consider the
following two cases.

Case(1) n ≡ 0 (mod 3).

The graph Km ⊗ Kn can be viewed as edge-disjoint union of m(m −
1)/2 copies of Kn,n. Since n ≡ 0 (mod 3), by Theorem 1.1, the graph
Kn,n has a (3; p, q)-decomposition except p = 1 when n = 3. Hence by
Remark 1.1, the graph Km ⊗Kn has the desired decomposition except
when(n, p) = (3, 1).

Subcase 1(i) m ≡ 0 or 1 (mod 3).

We can write Km ⊗ K3 = 3Km ⊕ (Km × K3). Since m ≡ 0 or 1
(mod 3), by Theorem 1.2, the graph Km has a (3; p, q)-decomposition,
whenever m ≥ 6. Also by Theorem 4.7, Km × K3 has a (3; p, q)-de-
composition. Hence by Remark 1.1, the graph Km⊗K3 has the desired
decomposition whenever m ≥ 6. Since K4⊗K3 = (K3⊗K3)⊕(S4⊗K3),
by Remark 1.4, S4 ⊗ K3 has an S4-decomposition and by Lemma 5.2,
K3 ⊗ K3 has a (3; p, q)-decomposition and hence we have the required
decomposition for m = 3, 4.

Subcase 1(ii) m ≡ 2 (mod 3).

Let m = 3k+ 2, k ≥ 0 be an integer, Km ⊗K3 = (K3k ⊗K3) ⊕ (K2 ⊗
K3) ⊕ (K3k,2⊗K3). By Theorem 1.1 and Remark 1.4, K3k,2⊗K3 and
K2 ⊗K3

∼= (K3,3) have a S4-decomposition. By Subcase 1(i), we have
that K3k ⊗K3 has a required decomposition and hence by Remark 1.1,
the graph Km ⊗Kn has the desired decomposition.

Case(2) m ≡ 0 or 1 (mod 3) and n ≡ 1 or 2 (mod 3).

We can write Km ⊗ Kn = nKm ⊕ (Km × Kn). Since m ≡ 0 or 1
(mod 3), by Theorem 1.2, the graph Km has a (3; p, q)-decomposition,
where m ≥ 6. Also by Theorem 4.7, Km×Kn has a (3; p, q)-decomposi-
tion. Hence by Remark 1.1, the graph Km⊗Kn has the desired decom-
position whenever m ≥ 6. For m < 6 i.e. when m = 3, 4, to construct
the required decomposition, we consider the following two subcases.
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Subcase 2(i) m = 3.

When n = 3k+1 ≥ 4, we write Km⊗Kn = K3⊗K3k+1 = (K3⊗K4) ⊕
(K3 ⊗ K3(k−1)) ⊕ 6K4,3(k−1). By Lemma 5.3 and Case 1, K3 ⊗ K4

and K3⊗K3(k−1) have a (3; p, q)-decomposition. Also, by Theorem 1.1,
K4,3(k−1) has a (3; p, q)-decomposition with p 6= 1 when k = 2. Hence

by Remark 1.1, the graph Km⊗Kn has the desired decomposition with
p 6= 1 when k = 2. For p = 1, the required decomposition can be
obtained from a (3; 1, q)-decomposition of K3 ⊗K4 and (3; 0, q)-decom-
position of the remaining graphs.

When n = 3k + 2, Km ⊗ Kn = K3 ⊗ K3k+2 = (K3 ⊗ K2) ⊕ (K3 ⊗
K3k) ⊕ 6K2,3k. By Lemma 5.1 and Case 1, K3⊗K2 and K3⊗K3k have
a (3; p, q)-decomposition. Also, by Theorem 1.1, K2,3k has a (3; p, q)-de-
composition with p 6= 1. Hence by Remark 1.1, the graph Km⊗Kn has
the desired decomposition with p 6= 1. For p = 1, the required decom-
position can be obtained from a (3; 1, q)-decomposition of K3 ⊗K2 and
(3; 0, q)-decomposition of the remaining graphs.

Subcase 2(ii) m = 4.

When n = 3k+1 ≥ 4, we write Km⊗Kn = K4⊗K3k+1 = (K4⊗K4) ⊕
(K4 ⊗K3(k−1)) ⊕ 12K4,3(k−1) = (K3 ⊗K4) ⊕ (S4 ⊗K4) ⊕ (K4 ⊗
K3(k−1)) ⊕ 12K4,3(k−1). By Lemmas 5.3 and 5.4 and Case 1, K3⊗K4,

S4⊗K4 and K4⊗K3(k−1) have a (3; p, q)-decomposition. Also, by The-
orem 1.1, K4,3(k−1) has a (3; p, q)-decomposition with p 6= 1 when k = 2.

Hence by Remark 1.1, the graph Km⊗Kn has the desired decomposition
(as in Subcase 2(i)).

When n = 3k + 2, we write Km ⊗Kn = K4 ⊗K3k+2 = (K3 ⊗K2) ⊕
(S4⊗K2) ⊕ (K4⊗K3k) ⊕ 12K2,3k. By Lemmas 5.1 and 5.4 and Case
1, K3 ⊗K2, S4 ⊗K2 and K4 ⊗K3k have a (3; p, q)-decomposition. Also
by Theorem 1.1, K2,3k has a (3; p, q)-decomposition with p 6= 1. Hence
by Remark 1.1, the graph Km ⊗Kn has the desired decomposition (as
in Subcase 2(i)).
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