BULLETIN OF The Couber 2019 INSTITUTE OF COMBINATORICS and its APPLICATIONS

Editors-in-Chief: Marco Buratti, Donald Kreher, Tran van Trung

ISSN 1182 - 1278

Decomposition of product graphs into paths and stars with three edges

A. PAULINE EZHILARASI AND A. MUTHUSAMY*

PERIYAR UNIVERSITY, SALEMS TAMIL NADU, INDIA post2pauline@gmail.com AND ambdu@yahoo.com

Abstract: Let P_k and S_k respectively denote a path and a star on k vertices. Decomposition of G into p copies of H_1 and q copies of H_2 is denoted as $\{pH_1, qH_2\}$ -decomposition. In this paper, we give necessary and sufficient conditions for the existence of a $\{pP_4, qS_4\}$ -decomposition of product graphs namely cartesian product, tensor product and wreath product of graphs, where p and q are nonnegative integers.

1 Introduction

Unless stated otherwise all graphs considered here are finite, simple, and undirected. For the standard graph-theoretic terminology the readers are referred to Bondy and Murty [5]. Let P_k , S_k , K_k respectively denote a path, star and complete graph on k vertices, and let $K_{m,n}$ denote the complete bipartite graph with m and n vertices in the parts. We denote a star S_k with center x_0 and end vertices x_1, \dots, x_{k-1} by $(x_0; x_1, \dots, x_{k-1})$. A graph whose vertex set is partitioned into subsets $V_1, ..., V_m$ with edge set $\{xy : x \in V_i, y \in V_j, 1 \le i \ne j \le m\}$ is a *complete m*-partite graph, denoted by K_{n_1,\ldots,n_m} , when $|V_i| = n_i$ for all *i*. For $G = K_{2n}$ or $K_{n,n}$, the graph G - I denotes G with a 1-factor I removed. For any integer $\lambda > 0$, λG denotes the graph consisting of λ edge-disjoint copies of G. The *complement* of the graph G is denoted by \overline{G} . For an arbitrary graph G, a list of edge-disjoint subgraphs H_1, \dots, H_k such that $E(G) = E(H_1) \cup \cdots \cup E(H_k)$ is called a *decomposition* of G and we write G as $G = H_1 \oplus \cdots \oplus H_k$. For $1 \leq i \leq k$, if $H_i \cong H$, we say that G has a H-decomposition. For two graphs G and H we define their cartesian product $G \square H$, tensor product $G \times H$ and lexicographic or wreath product $G \otimes H$ with vertex set $V(G) \times V(H) = \{(g,h) : g \in V(G) \text{ and } h \in V(H)\}$ and their

 $^{^{*}}$ Corresponding author.

Key words and phrases: Graph decomposition, Path, Star and Product graph AMS (MOS) Subject Classifications: 05C51, 05C70

edge set as given below.

$$\begin{split} E(G \ \Box \ H) &= \{(g,h)(g',h') : g = g', \ hh' \in E(H), \ \text{or} \ gg' \in E(G), \ h = h'\}, \\ E(G \times H) &= \{(g,h)(g',h') : gg' \in E(G) \ \text{and} \ hh' \in E(H)\}, \\ E(G \otimes H) &= \{(g,h)(g,h') : gg' \in E(G) \ \text{or} \ g = g', \ hh' \in E(H)\}. \end{split}$$

It is well known that the Cartesian product is commutative and associative and the tensor product is commutative and distributive over edge-disjoint union of graphs, i.e., if $G = G_1 \oplus \cdots \oplus G_k$, then $G \times H = (G_1 \times H) \oplus$ $\cdots \oplus (G_k \times H)$. It is easy to observe that $K_m \otimes \overline{K_n} \cong K_{n,\cdots,n(m \ times)}$ and $K_m \otimes \overline{K_n} = (K_m \times K_n) \oplus nK_m$. If G has a decomposition into p copies of H_1 and q copies of H_2 , then we say that G has a $\{pH_1, qH_2\}$ -decomposition.

Study of $\{pH_1, qH_2\}$ -decomposition of graphs is not new. Abueida et al. [1, 3] completely determined the values of n for which $K_n(\lambda)$ admits a $\{pH_1, qH_2\}$ -decomposition such that $H_1 \cup H_2 \cong K_t$, when $\lambda \ge 1$ and $|V(H_1)| = |V(H_2)| = t$, where $t \in \{4, 5\}$. Abueida and Daven [2] proved that there exists a $\{pK_k, qS_{k+1}\}$ -decomposition of K_n , for $k \ge 3$ and $n \equiv 0, 1 \pmod{k}$. Abueida and O'Neil [4] proved that for $k \in \{3, 4, 5\}$, there exists a $\{pC_k, qS_k\}$ -decomposition of $K_n(\lambda)$, whenever $n \ge k + 1$ except for the ordered triples $(k, n, \lambda) \in \{(3, 4, 1), (4, 5, 1), (5, 6, 1), (5, 6, 2), (5, 6, 4), (5, 7, 1), (5, 8, 1)\}$. Shyu [8, 9] obtained a necessary and sufficient condition on (p, q) for the existence of $\{pP_4, qS_4\}$ -decomposition of K_n and $K_{m,n}$. Priyadharsini and Muthusamy [7] established necessary and sufficient conditions for the existence of the (G_n, H_n) -multidecomposition of $K_n(\lambda)$ where $G_n, H_n \in \{C_n, P_{n-1}, S_{n-1}\}$. Jeevadoss and Muthusamy [6] obtained necessary and sufficient conditions for $\{pP_5, qC_4\}$ -decomposition of product graphs

In this paper, we show that the necessary conditions are sufficient for the existence of a $\{pP_4, qS_4\}$ -decomposition of $K_m \Box K_n, K_m \times K_n$ and $K_m \otimes \overline{K_n}$, where p and q are nonnegative integers. A decomposition of a graph G into p copies of a path of length k and q copies of a star with k edges for every admissible pair (p, q) will be referred to as a (k; p, q)-decomposition. To prove our results we state the following:

Theorem 1.1 ([9]). Let $p, q \ge 0$, and let $0 < m \le n$ be integers. There exists a (3; p, q)-decomposition of $K_{m,n}$ if and only if the following conditions hold:

- 1. 3(p+q) = mn;
- 2. $p \ge 1 \Rightarrow m \ge 2;$
- 3. $(m = 3 \lor (m = 2 \land n \equiv 0 \pmod{3})) \Rightarrow p \neq 1.$

Theorem 1.2 ([8]). Let $p, q \ge 0$ and n > 0 be integers. There exists a (3; p, q)-decomposition of K_n if and only if $n \ge 6$ and $3(p+q) = \frac{n(n-1)}{2}$.

Remark 1.1. If G_i has a $(3; p_i, q_i)$ -decomposition, for i = 1, 2, then $G_1 \cup G_2$ has a $(3; p_1 + p_2, q_1 + q_2)$ -decomposition.

Remark 1.2. If two stars S_4^1 and S_4^2 with distinct centers, share at least two vertices, then $S_4^1 \oplus S_4^2$ can be decomposed into two P_4 .

Remark 1.3. Given a star (a; u, v, w), the set $\{((a, i); (u, j), (v, j), (w, j)), 1 \le i \ne j \le n\}$ provides an S_4 -decomposition of $(a; u, v, w) \times K_n$.

Remark 1.4. Given a star (a; u, v, w), the set $\{((a, i); (u, j), (v, j), (w, j)), 1 \le i, j \le n\}$ provides an S_4 -decomposition of $(a; u, v, w) \otimes \overline{K_n}$.

2 Base constructions

In this section we establish a necessary and sufficient conditions for the existence of (3; p, q)-decomposition in $K_{n,n} - I$.

Example 1. There exists a (3; p, q)-decomposition of $G_1 = K_5 \setminus E(K_2)$ and $G_2 = K_8 \setminus E(K_2)$, for every admissible pair (p, q) of nonnegative integers with $3(p+q) = |E(G_i)|$, i = 1, 2.

Solution: Let $V(K_r) = \{x_i : 1 \le i \le r\}$. We give a (3; p, q)-decomposition of $K_5 \setminus (E(K_2) = x_1 x_2)$ as follows:

- 1. p = 0, q = 3. The required stars are $(x_5; x_1, x_2, x_3), (x_4; x_5, x_1, x_2), (x_3; x_1, x_2, x_4)$.
- 2. p = 1, q = 2. The required path and stars are $x_4x_2x_3x_1$ and $(x_5; x_1, x_2, x_3), (x_4; x_3, x_5, x_1)$ respectively.
- 3. p = 2, q = 1. The required paths and star are $x_5x_1x_3x_4, x_3x_2x_4x_1$ and $(x_5; x_4, x_2, x_3)$ respectively.
- 4. p = 3, q = 0. The required paths and are $x_1x_5x_3x_2$, $x_1x_4x_5x_2$, $x_1x_3x_4x_2$.

To prove the required decomposition of $K_8 \setminus E(K_2)$, first we decompose $K_8 \setminus (E(K_2) = x_1 x_4)$ into $9S_4$ as follows:

$$\{ (x_2; x_6, \boldsymbol{x_7}, \boldsymbol{x_8}), (x_5; x_6, \boldsymbol{x_7}, x_1) \}, \\ \{ (x_4; x_5, x_6, \boldsymbol{x_7}), (x_6; \boldsymbol{x_7}, \boldsymbol{x_8}, x_1) \}, \\ \{ (x_3; \boldsymbol{x_4}, \boldsymbol{x_5}, x_6), (x_8; x_3, x_4, \boldsymbol{x_5}) \}, \\ \{ (x_2; \boldsymbol{x_3}, \boldsymbol{x_4}, x_5), (x_1; x_2, \boldsymbol{x_3}, x_8), (x_7; x_8, x_3, x_1) \}$$

Now, the last three S_4 has a decomposition into either $\{1P_4, 2S_4\}$ or $\{3P_4\}$ as follows:

$$\{x_2x_3x_1x_8, (x_2; x_1, x_4, x_5), (x_7; x_8, x_3, x_1)\}$$

 $\{x_7x_8x_1x_3, x_5x_2x_3x_7, x_7x_1x_2x_4\}.$

or

By Remark 1.2, required number of paths and stars for the remaining choices can be obtained from the paired stars given above. Hence $K_8 \setminus E(K_2)$ has a (3; p, q)-decomposition.

Example 2. There exists a (3; p, q)-decomposition of $G_1 = K_6 \setminus \{P_{1,1}, P_{1,2}\}$ and $G_2 = K_6 \setminus \{P_{2,1}, P_{2,2}\}$, where $P_{1,1} = x_3 x_4 x_6 x_5$, $P_{1,2} = x_3 x_5 x_1 x_6$, $P_{2,1} = x_3 x_1 x_2 x_5$ and $P_{2,2} = x_1 x_6 x_2 x_3$, for every admissible pair (p,q)of nonnegative integers with $3(p+q) = |E(G_i)|$, i = 1, 2.

Solution: Let $V(K_6) = \{x_i : 1 \le i \le 6\}$. Now, $K_6 \setminus \{P_{1,1}, P_{1,2}\}$ has a (3; p, q)-decomposition as follows:

- 1. p = 0, q = 3. The required stars are $(x_3; x_6, x_1, x_2), (x_4; x_5, x_2, x_1), (x_2; x_6, x_5, x_1)$.
- 2. p = 1, q = 2. The required path and stars are $x_1x_4x_5x_2$ and $(x_3; x_6, x_1, x_2), (x_2; x_6, x_4, x_1)$ respectively.
- 3. p = 2, q = 1. The required paths and star are $x_1x_2x_5x_4$, $x_6x_2x_4x_1$ and $(x_3; x_6, x_1, x_2)$ respectively.
- 4. p = 3, q = 0. The required paths are $x_6 x_3 x_1 x_2, x_3 x_2 x_5 x_4, x_6 x_2 x_4 x_1$.

The (3; p, q)-decomposition of $K_6 \setminus \{P_{2,1}, P_{2,2}\}$ is given below.

- 1. p = 0, q = 3. The required stars are $(x_3; x_6, x_5, x_4), (x_4; x_6, x_2, x_1), (x_5; x_6, x_4, x_1)$.
- 2. p = 1, q = 2. The required path and stars are $x_6x_3x_4x_5$ and $(x_4; x_6, x_2, x_1)$, $(x_5; x_6, x_4, x_1)$ respectively.
- 3. p = 2, q = 1. The required paths and star are $x_1x_5x_4x_2$, $x_5x_6x_4x_1$ and $(x_3; x_6, x_5, x_4)$ respectively.
- 4. p = 3, q = 0. The required paths are $x_1 x_5 x_4 x_2, x_3 x_5 x_6 x_4, x_6 x_3 x_4 x_1$.

Lemma 2.1. There exists a (3; p, q)-decomposition of $K_{4,4} - I$, for every admissible pair (p, q) of nonnegative integers with $3(p+q) = |E(K_{4,4} - I)|$ and $p \neq 1$.

Proof. Let $V(G) = \{x_1, \dots, x_4\} \cup \{y_1, \dots, y_4\}$. First we decompose $K_{4,4} - I$ into $4S_4$ as follows:

$$\{(x_1; y_2, y_3, y_4), (x_2; y_1, y_3, y_4)\}, \{(x_3; y_1, y_2, y_4), (x_4; y_1, y_2, y_3)\}.$$

By Remark 1.2, we have the required even number of paths and stars from the paired stars. The last $3S_4$ gives $3P_4$ as follows:

$$\{x_2y_1x_4y_3, y_3x_2y_4x_3, x_4y_2x_3y_1\}.$$

Lemma 2.2. There exists a (3; p, q)-decomposition of $K_{6,6} - I$, for every admissible pair (p, q) of nonnegative integers with $3(p+q) = |E(K_{6,6} - I)|$.

Proof. Let $V(G) = \{x_1, \dots, x_6\} \cup \{y_1, \dots, y_6\}$. First we decompose $K_{6,6} - I$ into $10S_4$ as follows:

 $\{ (x_2; y_1, y_3, y_4), (x_5; y_3, y_4, y_6) \}, \{ (x_4; y_3, y_5, y_6), (x_6; y_3, y_4, y_5) \}, \\ \{ (y_5; x_1, x_2, x_3), (y_6; x_1, x_2, x_3) \}, \{ (x_1; y_2, y_3, y_4), (x_3; y_1, y_2, y_4) \}, \\ \{ (y_1; x_4, x_5, x_6), (y_2; x_4, x_5, x_6) \}.$

Now, the last $3S_4$ can be decomposed into $3P_4$ as follows:

 $y_4x_3y_2x_6, x_6y_1x_5y_2, y_2x_4y_1x_3.$

By Remark 1.2, the required decomposition for the remaining choices of p and q other than p = 1 can be obtained from the paired stars given above. For p = 1, the required path and stars are $x_1y_2x_3y_4$, $(x_3; y_1, y_5, y_6)$, $(x_1; y_3, y_5, y_6)$, $(x_2; y_1, y_3, y_4)$, $(y_2; x_4, x_5, x_6)$, $(y_1; x_4, x_5, x_6)$, $(y_3; x_4, x_5, x_6)$, $(y_4; x_1, x_5, x_6)$, $(y_5; x_2, x_4, x_6)$, $(y_6; x_2, x_4, x_5)$.

Lemma 2.3. There exists a (3; p, q)-decomposition of $K_{7,7} - I$, for every admissible pair (p, q) of nonnegative integers with $3(p+q) = |E(K_{7,7} - I)|$.

Proof. Let $V(G) = \{x_1, \dots, x_7\} \cup \{y_1, \dots, y_7\}$. First we decompose $K_{7,7} - I$ into $14S_4$ as follows:

 $\begin{array}{l} \left\{ (x_2; y_1, \boldsymbol{y_3}, \boldsymbol{y_4}), \ (x_7; y_1, \boldsymbol{y_3}, y_2) \right\}, \left\{ (x_5; \boldsymbol{y_3}, \boldsymbol{y_4}, y_6), \ (x_7; \boldsymbol{y_4}, y_5, y_6) \right\}, \\ \left\{ (x_1; \boldsymbol{y_5}, \boldsymbol{y_6}, y_7), \ (x_2; y_5, \boldsymbol{y_6}, y_7) \right\}, \left\{ (x_3; y_5, \boldsymbol{y_6}, \boldsymbol{y_7}), \ (x_4; y_3, y_5, \boldsymbol{y_6}) \right\}, \\ \left\{ (x_6; \boldsymbol{y_3}, y_4, y_5), \ (x_1; \boldsymbol{y_2}, \boldsymbol{y_3}, y_4) \right\}, \left\{ (x_3; \boldsymbol{y_1}, y_2, y_4), \ (x_4; \boldsymbol{y_7}, \boldsymbol{y_1}, y_2) \right\}, \\ \left\{ (x_5; \boldsymbol{y_7}, \boldsymbol{y_1}, y_2), \ (x_6; \boldsymbol{y_7}, y_1, y_2) \right\}. \end{array}$

Now, the last $3S_4$ can be decomposed into $3P_4$ as follows:

 $\{x_5y_7x_4y_2, x_6y_2x_5y_1, x_4y_1x_6y_7\}.$

By Remark 1.2, the required decomposition for the remaining choices of p and q other than p = 1 can be obtained from the paired stars given above. For p = 1, the required path and stars are $x_1y_2x_3y_4$, $(x_3; y_1, y_5, y_6)$, $(x_1; y_3, y_5, y_6)$, $(x_2; y_1, y_3, y_4)$, $(y_2; x_4, x_5, x_6)$, $(y_1; x_4, x_5, x_6)$, $(y_3; x_4, x_5, x_6)$, $(y_4; x_1, x_5, x_6)$, $(y_5; x_2, x_4, x_6)$, $(y_6; x_2, x_4, x_5)$, $(x_7; y_1, y_2, y_3)$, $(x_7; y_4, y_5, y_6)$, $(y_7; x_1, x_2, x_3)$, $(y_7; x_4, x_5, x_6)$.

Lemma 2.4. There exists a (3; p, q)-decomposition of $K_{9,9} - I$, for every admissible pair (p, q) of nonnegative integers with $3(p+q) = |E(K_{9,9} - I)|$.

Proof. Let $V(G) = \{x_1, \dots, x_9\} \cup \{y_1, \dots, y_9\}$. We can write

$$K_{9,9} - I = (K_{6,6} - I) \oplus K_{6,3} \oplus K_{3,6} \oplus (K_{3,3} - I).$$

By Lemma 2.1, $K_{6,6} - I$ has a (3; p, q)-decomposition. Now, decompose $G(=K_{6,3} \oplus K_{3,6} \oplus (K_{3,3} - I))$ into $14S_4$ as follows:

 $\{ (x_7; y_1, y_2, y_3), (x_8; y_2, y_3, y_6) \}, \{ (x_9; y_3, y_6, y_8), (x_7; y_6, y_8, y_9) \}, \\ \{ (x_8; y_7, y_9, y_1), (x_9; y_7, y_1, y_2) \}, \{ (y_4; x_7, x_8, x_9), (y_5; x_7, x_8, x_9) \}, \\ \{ (y_7; x_1, x_2, x_3), (y_8; x_2, x_3, x_4) \}, \{ (y_9; x_3, x_4, x_5), (y_7; x_4, x_5, x_6) \}, \\ \{ (y_8; x_5, x_6, x_1), (y_9; x_6, x_1, x_2) \}.$

Now, the last $3S_4$ can be decompose into $3P_4$ as follows:

 $\{x_4y_7x_5y_8, x_2y_9x_6y_7, y_9x_1y_8x_6\}.$

Hence by Remark 1.2, G has a (3; p, q)-decomposition with $p \neq 1$. Now, by Remark 1.1, we have the desired decomposition of $K_{9,9} - I$.

Lemma 2.5. Let p, q be nonnegative integers and G be an r-regular graph on v vertices. If G has a (3; p, q)-decomposition, then $rv \equiv 0 \pmod{6}$.

Proof. Since G is r-regular with v vertices, G has rv/2 edges. Now, assume that G has a (3; p, q)-decomposition. Then the number of edges in the graph must be divisible by 3, i.e., 6|rv and hence $rv \equiv 0 \pmod{6}$.

Theorem 2.6. The graph $K_{n,n} - I$ has a (3; p, q)-decomposition for every admissible pair (p,q) of nonnegative integers with 3(p+q) = n(n-1) if and only if $n \equiv 0$ or $1 \pmod{3}$ with $(n,p) \neq (4,1)$ and q = 0 when n = 3.

Proof. Necessity. Since $K_{n,n} - I$ is (n-1)-regular with 2n vertices, $n \equiv 0$ or $1 \pmod{3}$ follows from Lemma 2.5. When n = 3, $K_{3,3} - I$ is 2-regular and hence it does not contains any star with 3 edges, therefore q = 0. Suppose there is a $\{P_4, 3S_4\}$ -decomposition of $K_{4,4} - I$. Let $V(K_{4,4} - I) = V = V_1 \cup V_2 = \{u_1, u_2, u_3, u_4\} \cup \{v_1, v_2, v_3, v_4\}$ and $I = \{u_1v_1, u_2v_2, u_3v_3, u_4v_4\}$. Without loss of generality let $P_4 = u_1v_2u_3v_1$. So deg(u) = 3 only for $u = u_2, u_4 \in V_1$ and $u = v_3, v_4 \in V_2$ in $(K_{4,4} - I) \setminus E(P_4)$. Then the centers of two stars are contained in exactly one partite set say V_1 . So the remaining graph is not a star since $deg(u) \leq 2$ for all $u \in V$, therefore $p \neq 1$.

Sufficiency. For n = 3, the paths are $x_1y_2x_3y_1$, $x_1y_3x_2y_1$ and we proved such decomposition in Lemma 2.1 when n = 4. We construct the required decomposition for the remaining choices of n in four cases.

Figure 1: The graph $K_{n,n} - I$.

Case(1) $n \equiv 0 \pmod{6}$.

Let n = 6k, k > 0 be an integer. We can write

$$K_{n,n} - I = K_{6k,6k} - I = k(K_{6,6} - I) \oplus k(k-1)K_{6,6}A$$

(See Figure 1 with s = k, i = 0). By Theorem 1.1 and Lemma 2.2, $K_{6,6} - I$ and $K_{6,6}$ have a (3; p, q)-decomposition. Hence by Remark 1.1, $K_{n,n} - I$ has a (3; p, q)-decomposition.

Case(2) $n \equiv 1 \pmod{6}$.

Let n = 6k + 1, k > 0 be an integer. We can write

$$K_{n,n} - I = K_{6k+1,6k+1} - I$$

= $(k-1)(K_{6,6} - I) \oplus (K_{7,7} - I)$
 $\oplus (k-1)(k-2)K_{6,6} \oplus 2(k-1)K_{7,6}$

(See Figure 1 with s = k - 1, i = 7). By Lemmas 2.2 and 2.3, $K_{6,6} - I$ and $K_{7,7} - I$ have a (3; p, q)-decomposition. Also, by Theorem 1.1 $K_{6,6}$ and $K_{7,6}$ have a (3; p, q)-decomposition. Hence by Remark 1.1, $K_{n,n} - I$ has a (3; p, q)-decomposition.

Case(3) $n \equiv 3 \pmod{6}$.

Let n = 6k + 3, k > 0 be an integer. We can write

$$K_{n,n} - I = K_{6k+3,6k+3} - I$$

= $(k-1)(K_{6,6} - I) \oplus (K_{9,9} - I)$
 $\oplus (k-1)(k-2)K_{6,6} \oplus 2(k-1)K_{9,6}$

(See Figure 1 with s = k - 1, i = 9). By Lemmas 2.2 and 2.4, $K_{6,6} - I$ and $K_{9,9} - I$ have a (3; p, q)-decomposition. Also, by Theorem 1.1 $K_{6,6}$

and $K_{9,6}$ have a (3; p, q)-decomposition. Hence by Remark 1.1, $K_{n,n} - I$ has a (3; p, q)-decomposition.

Case(4) $n \equiv 4 \pmod{6}$.

Let n = 6k + 4, k > 0 be an integer. We can write

$$K_{n,n} - I = K_{6k+4,6k+4} - I$$

= $k(K_{6,6} - I) \oplus k(k-1)K_{6,6} \oplus (K_{4,4} - I) \oplus 2kK_{6,4}$

(See Figure 1 with s = k, i = 4). By Lemmas 2.1 and 2.2, $K_{4,4} - I$ and $K_{6,6} - I$ have a (3; p, q)-decomposition. Also, by Theorem 1.1 $K_{6,6}$ and $K_{6,4}$ have a (3; p, q)-decomposition. Hence by Remark 1.1, $K_{n,n} - I$ has a (3; p, q)-decomposition.

3 (3; p, q)-decomposition of $K_m \Box K_n$

In this section we obtain the existence of (3; p, q)-decomposition of Cartesian product of complete graphs.

Lemma 3.1. There exists a (3; p, q)-decomposition of $K_6 \Box K_5$, for every admissible pair (p, q) of nonnegative integers with $3(p+q) = |E(K_6 \Box K_5)|$. Proof. Let $V(K_6 \Box K_5) = \{x_{i,j} : 1 \le i \le 6, 1 \le j \le 5\}$. We can write

$$\begin{split} K_6 \Box K_5 &= 3K_6 \ \oplus \ 6(K_5 \backslash E(K_2)) \oplus (K_6 \backslash \{P_{1,1}, P_{1,2}\}) \\ &\oplus \ (K_6 \backslash \{P_{2,1}, P_{2,2}\}) \ \oplus \ (P_{1,1} \oplus P_{1,2} \ \oplus \ P_{2,1} \ \oplus \ P_{2,2} \ \oplus \ 6K_2), \end{split}$$

where

$$\begin{split} P_{1,1} &= x_{3,1} x_{4,1} x_{6,1} x_{5,1}, \\ P_{1,2} &= x_{3,1} x_{5,1} x_{1,1} x_{6,1}, \\ P_{2,1} &= x_{3,2} x_{1,2} x_{2,2} x_{5,2}, \\ P_{2,2} &= x_{1,2} x_{6,2} x_{2,2} x_{3,2}. \end{split}$$

Now, by Examples 1 and 2:

$$6(K_5 \setminus E(K_2)), K_6 \setminus \{P_{1,1}, P_{1,2}\}$$
 and $K_6 \setminus \{P_{2,1}, P_{2,2}\}$

have a (3; p, q)-decomposition. Also, by Theorem 1.2, K_6 has a (3; p, q)-decomposition. We prove $(P_{1,1} \oplus P_{1,2} \oplus P_{2,1} \oplus P_{2,2} \oplus 6K_2)$ has a (3; p, q)-decomposition as follows:

1. p = 0, q = 6. The required stars are $(x_{6,1}; x_{1,1}, x_{5,1}, x_{6,2}), (x_{5,1}; x_{1,1}, x_{3,1}, x_{5,2}), (x_{4,1}; x_{3,1}, x_{6,1}, x_{4,2}),$ $(x_{2,2}; x_{6,2}, x_{5,2}, x_{2,1}), (x_{1,2}; x_{1,1}, x_{2,2}, x_{6,2}), (x_{3,2}; x_{3,1}, x_{2,2}, x_{1,2}).$

- 2. p = 1, q = 5. The required path and stars are $x_{3,1}x_{3,2}x_{2,2}x_{1,2}$ and $(x_{6,1}; x_{1,1}, x_{5,1}, x_{6,2})$, $(x_{5,1}; x_{1,1}, x_{3,1}, x_{5,2})$, $(x_{4,1}; x_{3,1}, x_{6,1}, x_{4,2})$, $(x_{2,2}; x_{6,2}, x_{5,2}, x_{2,1})$, $(x_{1,2}; x_{1,1}, x_{3,2}, x_{6,2})$ respectively.
- 3. p = 2, q = 4. The required paths and stars are $x_{1,1}x_{1,2}x_{3,2}x_{3,1}$, $x_{6,2}x_{1,2}x_{2,2}x_{3,2}$ and $(x_{6,1}; x_{1,1}, x_{5,1}, x_{6,2})$, $(x_{5,1}; x_{1,1}, x_{3,1}, x_{5,2})$, $(x_{4,1}; x_{3,1}, x_{6,1}, x_{4,2})$, $(x_{2,2}; x_{6,2}, x_{5,2}, x_{2,1})$ respectively.
- 4. p = 3, q = 3. The required paths and stars are $x_{1,1}x_{1,2}x_{2,2}x_{2,1}$, $x_{5,2}x_{2,2}x_{3,2}x_{3,1}$, $x_{3,2}x_{1,2}x_{6,2}x_{2,2}$ and $(x_{6,1}; x_{1,1}, x_{5,1}, x_{6,2})$, $(x_{5,1}; x_{1,1}, x_{3,1}, x_{5,2})$, $(x_{4,1}; x_{3,1}, x_{6,1}, x_{4,2})$ respectively.
- 5. p = 4, q = 2. The required paths and stars are $x_{1,1}x_{1,2}x_{2,2}x_{2,1}$, $x_{1,1}x_{5,1}x_{3,1}x_{3,2}$, $x_{5,1}x_{5,2}x_{2,2}x_{3,2}$, $x_{3,2}x_{1,2}x_{6,2}x_{2,2}$ and $(x_{6,1}; x_{1,1}, x_{5,1}, x_{6,2})$, $(x_{4,1}; x_{3,1}, x_{6,1}, x_{4,2})$ respectively.
- 6. p = 5, q = 1. The required paths and stars are $x_{1,1}x_{1,2}x_{2,2}x_{2,1}$, $x_{3,2}x_{1,2}x_{6,2}x_{2,2}$, $x_{6,2}x_{6,1}x_{1,1}x_{5,1}$, $x_{5,1}x_{5,2}x_{2,2}x_{3,2}$, $x_{6,1}x_{5,1}x_{3,1}x_{3,2}$ and $(x_{4,1}; x_{3,1}, x_{6,1}, x_{4,2})$ respectively.
- 7. p = 6, q = 0. The required paths are $x_{1,1}x_{1,2}x_{2,2}x_{2,1}, x_{3,2}x_{1,2}x_{6,2}x_{2,2}, x_{6,2}x_{6,1}x_{1,1}x_{5,1}, x_{5,1}x_{5,2}x_{2,2}x_{3,2}, x_{4,2}x_{4,1}x_{3,1}x_{3,2}, x_{4,1}x_{6,1}x_{5,1}x_{3,1}.$

Thus the graph $K_6 \Box K_5$ has a required decomposition.

Lemma 3.2. There exists a (3; p, q)-decomposition of $K_3 \Box K_5$, for every admissible pair (p, q) of nonnegative integers with $3(p+q) = |E(K_3 \Box K_5)|$. Proof. Let $V(K_3 \Box K_5) = \{x_{i,j} : 1 \le i \le 3, 1 \le j \le 5\}$. First we decompose $K_3 \Box K_5$ into $15S_4$ as follows:

 $\{ (x_{1,3}; x_{2,3}, x_{1,4}, x_{1,5}), (x_{1,1}; x_{3,1}, x_{1,4}, x_{1,5}) \}, \\ \{ (x_{2,2}; x_{1,2}, x_{2,3}, x_{2,4}), (x_{2,1}; x_{3,1}, x_{2,2}, x_{2,3}) \}, \\ \{ (x_{2,4}; x_{1,4}, x_{2,5}, x_{2,1}), (x_{2,3}; x_{3,3}, x_{2,4}, x_{2,5}) \}, \\ \{ (x_{3,2}; x_{2,2}, x_{3,3}, x_{3,4}), (x_{3,1}; x_{3,2}, x_{3,3}, x_{3,5}) \}, \\ \{ (x_{3,4}; x_{2,4}, x_{3,5}, x_{3,1}), (x_{3,3}; x_{1,3}, x_{3,4}, x_{3,5}) \}, \\ \{ (x_{2,5}; x_{1,5}, x_{2,1}, x_{2,2}), (x_{3,5}; x_{1,5}, x_{2,5}, x_{3,2}) \}, \\ \{ (x_{1,1}; x_{2,1}, x_{1,2}, x_{1,3}), (x_{1,2}; x_{3,2}, x_{1,3}, x_{1,5}), (x_{1,4}; x_{3,4}, x_{1,5}, x_{1,2}) \} .$

Now, the last $3S_4$ can be decomposed into either $\{1P_4, 2S_4\}$ or $\{3P_4\}$ as follows:

$$\{x_{2,1}x_{1,1}x_{1,3}x_{1,2}, (x_{1,2}; x_{3,2}, x_{1,1}, x_{1,5}), (x_{1,4}; x_{3,4}, x_{1,5}, x_{1,2})\}$$

or

 $\{x_{1,1}x_{1,2}x_{1,4}x_{3,4}, x_{2,1}x_{1,1}x_{1,3}x_{1,2}, x_{3,2}x_{1,2}x_{1,5}x_{1,4}\}.$

By Remark 1.2, required number of paths and stars for remaining choices of p and q can be obtained from the paired stars given above.

Lemma 3.3. There exists a (3; p, q)-decomposition of $K_3 \Box K_6$, for every admissible pair (p, q) of nonnegative integers with $3(p+q) = |E(K_3 \Box K_6)|$. Proof. Let $V(K_3 \Box K_6) = \{x_{i,j} : 1 \le i \le 3, 1 \le j \le 6\}$. First we decompose $K_3 \Box K_6$ into $21S_4$ as follows:

 $\{ (x_{3,4}; x_{1,4}, x_{3,2}, x_{3,6}), (x_{2,4}; x_{1,4}, x_{3,4}, x_{2,1}) \}, \\ \{ (x_{1,6}; x_{3,6}, x_{1,1}, x_{1,2}), (x_{1,5}; x_{1,4}, x_{1,1}, x_{1,6}) \}, \\ \{ (x_{1,3}; x_{1,4}, x_{1,5}, x_{1,6}), (x_{1,4}; x_{1,2}, x_{1,1}, x_{1,6}) \}, \\ \{ (x_{1,2}; x_{2,2}, x_{3,2}, x_{1,3}), (x_{1,1}; x_{2,1}, x_{1,3}, x_{1,2}) \}, \\ \{ (x_{3,4}; x_{3,5}, x_{3,3}, x_{3,1}), (x_{3,2}; x_{3,1}, x_{2,2}, x_{3,3}) \}, \\ \{ (x_{1,5}; x_{1,2}, x_{2,5}, x_{3,5}), (x_{2,5}; x_{2,3}, x_{2,1}, x_{3,5}) \}, \\ \{ (x_{3,6}; x_{3,5}, x_{3,2}, x_{2,6}), (x_{3,5}; x_{3,3}, x_{3,1}, x_{3,2}) \}, \\ \{ (x_{2,6}; x_{1,6}, x_{2,1}, x_{2,4}), (x_{2,3}; x_{2,1}, x_{2,6}, x_{2,2}) \}, \\ \{ (x_{2,5}; x_{2,2}, x_{2,4}, x_{2,6}), (x_{3,3}; x_{3,1}, x_{3,6}, x_{1,3}), (x_{2,3}; x_{1,3}, x_{3,3}, x_{2,4}) \}. \end{cases}$

Now, the last $3S_4$ can be decomposed into either $\{1P_4, 2S_4\}$ or $\{3P_4\}$ as follows:

 $\{x_{2,3}x_{2,4}x_{1,3}x_{3,3}, (x_{3,1}; x_{1,1}, x_{2,1}, x_{3,6}), (x_{3,3}; x_{3,1}, x_{3,6}, x_{2,3}))\}$ or $\{x_{2,3}x_{2,4}x_{1,3}x_{3,3}, x_{1,1}x_{3,1}x_{3,3}x_{2,3}, x_{2,1}x_{3,1}x_{3,6}x_{3,3}\}.$

By Remark 1.2, required number of paths and stars for remaining choices of p and q can be obtained from the paired stars given above.

Lemma 3.4. There exists a (3; p, q)-decomposition of $K_4 \square K_6$, for every admissible pair (p, q) of nonnegative integers with $3(p+q) = |E(K_4 \square K_6)|$. Proof. Let $V(K_4 \square K_6) = \{x_{i,j} : 1 \le i \le 4, 1 \le j \le 6\}$. We can write $K_4 \square K_6 = (6K_4 \oplus 3K_6) \oplus K_6$. First we decompose $(6K_4 \oplus 3K_6)$ into $27S_4$ as follows:

```
 \{ (x_{4,1}; x_{3,1}, x_{2,1}, x_{1,1}), (x_{3,1}; x_{1,1}, x_{2,1}, x_{3,6}) \}, \\ \{ (x_{4,2}; x_{3,2}, x_{2,2}, x_{1,2}), (x_{1,2}; x_{2,2}, x_{3,2}, x_{1,3}) \}, \\ \{ (x_{4,3}; x_{3,3}, x_{2,3}, x_{1,3}), (x_{2,3}; x_{1,3}, x_{3,3}, x_{2,4}) \}, \\ \{ (x_{4,4}; x_{3,4}, x_{2,4}, x_{1,4}), (x_{2,4}; x_{1,4}, x_{3,4}, x_{2,1}) \}, \\ \{ (x_{4,5}; x_{3,5}, x_{2,5}, x_{1,5}), (x_{1,5}; x_{1,2}, x_{2,5}, x_{3,5}) \}, \\ \{ (x_{4,6}; x_{3,6}, x_{2,6}, x_{1,6}), (x_{2,6}; x_{1,6}, x_{2,1}, x_{2,4}) \}, \\ \{ (x_{4,6}; x_{3,6}, x_{2,6}, x_{1,6}), (x_{1,5}; x_{1,4}, x_{1,1}, x_{2,4}) \}, \\ \{ (x_{3,4}; x_{1,4}, x_{3,2}, x_{3,6}), (x_{3,6}; x_{3,5}, x_{3,2}, x_{2,6}) \}, \\ \{ (x_{1,6}; x_{3,6}, x_{1,1}, x_{1,2}), (x_{1,5}; x_{1,4}, x_{1,1}, x_{1,6}) \}, \\ \{ (x_{3,3}; x_{3,1}, x_{3,6}, x_{1,3}), (x_{3,2}; x_{3,1}, x_{2,2}, x_{3,3}) \}, \\ \{ (x_{2,5}; x_{2,3}, x_{2,1}, x_{3,5}), (x_{2,3}; x_{2,1}, x_{2,6}, x_{2,2}) \}, \\ \{ (x_{2,5}; x_{2,2}, x_{2,4}, x_{2,6}), (x_{2,2}; x_{2,1}, x_{2,4}, x_{2,6}) \}, \\ \{ (x_{1,3}; x_{1,4}, x_{1,5}, x_{1,6}), (x_{1,4}; x_{1,2}, x_{1,1}, x_{1,6}), (x_{1,1}; x_{2,1}, x_{1,3}, x_{1,2}) \}. \end{cases}
```

Now, the last $3S_4$ can be decomposed into either $\{1P_4, 2S_4\}$ or $\{3P_4\}$ as follows:

$$\{x_{1,5}x_{1,3}x_{1,6}x_{1,4}, (x_{1,4}; x_{1,2}, x_{1,1}, x_{1,3}), (x_{1,1}; x_{2,1}, x_{1,3}, x_{1,2})\}$$

or

$$\{x_{1,5}x_{1,3}x_{1,6}x_{1,4}, x_{1,3}x_{1,1}x_{1,2}x_{1,4}, x_{2,1}x_{1,1}x_{1,4}x_{1,3}\}$$

By Remark 1.2, required number of paths and stars for remaining choices of p and q can be obtained from the paired stars given above. Hence $(6K_4 \oplus 3K_6)$ has a (3; p, q)-decomposition. Also, by Theorem 1.2, K_6 has a (3; p, q)-decomposition. Hence by Remark 1.1, the graph $K_4 \Box K_6$ has the desired decomposition.

Lemma 3.5. There exists a (3; p, q)-decomposition of $K_3 \Box K_8$, for every admissible pair (p, q) of nonnegative integers with $3(p+q) = |E(K_3 \Box K_8)|$.

Proof. Let $V(K_3 \square K_8) = \{x_{i,j} : 1 \le i \le 3, 1 \le j \le 8\}$. First we decompose $K_3 \square K_8$ into $36S_4$ as follows:

$$\{ (x_{3,4}; x_{1,4}, x_{3,2}, x_{3,6}), (x_{2,4}; x_{1,4}, x_{3,4}, x_{2,1}) \}, \\ \{ (x_{1,6}; x_{3,6}, x_{1,1}, x_{1,2}), (x_{1,1}; x_{2,1}, x_{1,3}, x_{1,2}) \}, \\ \{ (x_{3,1}; x_{1,1}, x_{3,6}, x_{2,1}), (x_{3,3}; x_{3,1}, x_{3,6}, x_{1,3}) \}, \\ \{ (x_{2,3}; x_{1,3}, x_{3,3}, x_{2,4}), (x_{2,8}; x_{2,6}, x_{2,4}, x_{2,3}) \}, \\ \{ (x_{2,3}; x_{1,3}, x_{3,3}, x_{2,4}), (x_{2,8}; x_{2,6}, x_{2,4}, x_{2,3}) \}, \\ \{ (x_{2,3}; x_{1,2}, x_{2,5}, x_{3,5}), (x_{2,5}; x_{2,3}, x_{3,5}, x_{2,1}) \}, \\ \{ (x_{2,6}; x_{1,6}, x_{2,3}, x_{2,5}), (x_{2,5}; x_{2,3}, x_{3,5}, x_{2,1}) \}, \\ \{ (x_{2,6}; x_{1,6}, x_{2,3}, x_{2,7}), (x_{2,6}; x_{2,7}, x_{2,4}, x_{2,1}) \}, \\ \{ (x_{2,1}; x_{2,8}, x_{2,3}, x_{2,7}), (x_{2,5}; x_{2,8}, x_{2,2}, x_{2,7}) \}, \\ \{ (x_{2,7}; x_{3,7}, x_{2,3}, x_{2,7}), (x_{3,8}; x_{3,7}, x_{2,8}, x_{1,8}) \}, \\ \{ (x_{2,7}; x_{3,7}, x_{2,3}, x_{2,2}), (x_{2,8}; x_{2,7}, x_{1,8}, x_{2,2}) \}, \\ \{ (x_{3,7}; x_{3,1}, x_{3,2}, x_{3,3}), (x_{3,8}; x_{3,1}, x_{3,2}, x_{3,3}) \}, \\ \{ (x_{1,7}; x_{1,4}, x_{1,5}, x_{1,6}), (x_{1,5}; x_{1,4}, x_{1,1}, x_{1,6}) \}, \\ \{ (x_{1,3}; x_{1,4}, x_{1,5}, x_{1,6}), (x_{1,8}; x_{1,4}, x_{1,5}, x_{1,6}) \}, \\ \{ (x_{3,6}; x_{3,5}, x_{3,2}, x_{2,6}), (x_{3,5}; x_{3,3}, x_{3,1}, x_{3,2}) \}. \end{cases}$$

Now, the last $2S_4$ decompose into $\{1P_4, 1S_4\}$ as follows:

 $\{x_{2,6}x_{3,6}x_{3,2}x_{3,5}, (x_{3,5}; x_{3,3}, x_{3,1}, x_{3,6})\}.$

By Remark 1.2, required number of paths and stars for remaining choices of p and q can be obtained from the paired stars given above.

Lemma 3.6. There exists a (3; p, q)-decomposition of $K_6 \Box K_8$, for every admissible pair (p, q) of nonnegative integers with $3(p+q) = |E(K_6 \Box K_8)|$.

Proof. Let $V(K_6 \Box K_8) = \{x_{i,j} : 1 \le i \le 6, 1 \le j \le 8\}$. We can write

$$\begin{split} K_6 \Box \ K_8 &= 6K_6 \ \oplus \ 6(K_8 \setminus E(K_2)) \ \oplus \ (K_6 \setminus \{P_{1,1}, P_{1,2}\}) \\ & \oplus \ (K_6 \setminus \{P_{2,1}, P_{2,2}\}) \ \oplus \ (P_{1,1} \oplus \ P_{1,2} \ \oplus \ P_{2,1} \ \oplus \ P_{2,2} \ \oplus \ 6K_2), \end{split}$$

where $P_{1,1} = x_{3,1}x_{4,1}x_{6,1}x_{5,1}$, $P_{1,2} = x_{3,1}x_{5,1}x_{1,1}x_{6,1}$, $P_{2,1} = x_{3,2}x_{1,2}x_{2,2}x_{5,2}$, $P_{2,2} = x_{1,2}x_{6,2}x_{2,2}x_{3,2}$. Now, by Examples 1 and 2,

$$6(K_8 \setminus E(K_2)), K_6 \setminus \{P_{1,1}, P_{1,2}\}$$
 and $K_6 \setminus \{P_{2,1}, P_{2,2}\}$

have a (3; p, q)-decomposition. Also by Theorem 1.2, K_6 has a (3; p, q)-decomposition. We proved that $(P_{1,1} \oplus P_{1,2} \oplus P_{2,1} \oplus P_{2,2} \oplus 6K_2)$ has a (3; p, q)-decomposition in Lemma 3.1. Hence $K_6 \Box K_8$ has a (3; p, q)-decomposition.

Lemma 3.7. There exists a (3; p, q)-decomposition of $K_3 \Box K_4$, for every admissible pair (p, q) of nonnegative integers with $3(p+q) = |E(K_3 \Box K_4)|$.

Proof. Let $V(K_3 \Box K_4) = \{x_{i,j} : 1 \le i \le 3, 1 \le j \le 4\}$. First we decompose $K_3 \Box K_4$ into $10S_4$ as follows:

$$\{ (x_{1,1}; \mathbf{x_{1,4}}, \mathbf{x_{1,2}}, x_{1,3}), (x_{1,2}; \mathbf{x_{3,2}}, x_{1,3}, x_{1,4}) \}, \\ \{ (x_{1,4}; x_{1,3}, \mathbf{x_{2,4}}, x_{3,4}), (x_{2,3}; \mathbf{x_{2,2}}, \mathbf{x_{2,4}}, x_{1,3}) \}, \\ \{ (x_{3,2}; x_{2,2}, \mathbf{x_{3,3}}, x_{3,4}), (x_{3,4}; \mathbf{x_{3,1}}, \mathbf{x_{3,3}}, x_{2,4}) \}, \\ \{ (x_{2,2}; x_{2,1}, x_{1,2}, \mathbf{x_{2,4}}), (x_{2,1}; \mathbf{x_{1,1}}, \mathbf{x_{2,4}}, x_{2,3}) \}, \\ \{ (x_{3,1}; x_{1,1}, x_{2,1}, x_{3,2}), (x_{3,3}; x_{2,3}, x_{1,3}, x_{3,1}) \}.$$

From the last $4S_4$ we have either $\{3S_4, 1P_4\}$ or $\{1S_4, 3P_4\}$ or $\{4P_4\}$ as follows:

$$\begin{cases} x_{1,2}x_{2,2}x_{2,4}x_{2,1}, & (x_{2,1};x_{1,1},x_{2,2},x_{2,3}), \\ (x_{3,1};x_{1,1},x_{2,1},x_{3,2}), & (x_{3,3};x_{2,3},x_{1,3},x_{3,1}) \end{cases}$$

or

 $\begin{cases} (x_{2,2}; x_{2,1}, x_{1,2}, x_{2,4}), & x_{1,3}x_{3,3}x_{2,3}x_{2,1}, \\ x_{3,2}x_{3,1}x_{1,1}x_{2,1}, & x_{3,3}x_{3,1}x_{2,1}x_{2,4} \end{cases}$

or

```
 \begin{cases} x_{1,3}x_{3,3}x_{2,3}x_{2,1}, & x_{3,2}x_{3,1}x_{1,1}x_{2,1}, \\ x_{3,3}x_{3,1}x_{2,1}x_{2,2}, & x_{1,2}x_{2,2}x_{2,4}x_{2,1} \end{cases}
```

By Remark 1.2, required number of paths and stars for remaining choices of p and q can be obtained from the paired stars given above.

Lemma 3.8. There exists a (3; p, q)-decomposition of $K_4 \Box K_4$, for every admissible pair (p, q) of nonnegative integers with $3(p+q) = |E(K_4 \Box K_4)|$.

Proof. Let $V(K_4 \Box K_4) = \{x_{i,j} : 1 \le i \le 4, 1 \le j \le 4\}$. First we decompose $K_4 \Box K_4$ into $16S_4$ as follows:

$$\left\{ \begin{pmatrix} x_{1,3}; \boldsymbol{x_{2,3}}, \boldsymbol{x_{3,3}}, x_{1,4} \end{pmatrix}, & \begin{pmatrix} x_{4,3}; x_{1,3}, x_{2,3}, \boldsymbol{x_{3,3}} \end{pmatrix} \right\}, \\ \left\{ \begin{pmatrix} x_{2,2}; \boldsymbol{x_{1,2}}, \boldsymbol{x_{2,3}}, x_{2,4} \end{pmatrix}, & \begin{pmatrix} x_{4,2}; \boldsymbol{x_{1,2}}, x_{2,2}, x_{3,2} \end{pmatrix} \right\}, \\ \left\{ \begin{pmatrix} x_{4,1}; \boldsymbol{x_{2,1}}, \boldsymbol{x_{4,3}}, x_{4,4} \end{pmatrix}, & \begin{pmatrix} x_{1,1}; \boldsymbol{x_{2,1}}, x_{3,1}, x_{4,1} \end{pmatrix} \right\}, \\ \left\{ \begin{pmatrix} x_{4,4}; x_{4,3}, \boldsymbol{x_{2,4}}, x_{1,4} \end{pmatrix}, & \begin{pmatrix} x_{4,2}; \boldsymbol{x_{4,1}}, \boldsymbol{x_{4,4}}, x_{4,3} \end{pmatrix} \right\}, \\ \left\{ \begin{pmatrix} x_{1,2}; \boldsymbol{x_{1,3}}, \boldsymbol{x_{1,4}}, x_{3,2} \end{pmatrix}, & \begin{pmatrix} x_{1,1}; x_{1,2}, \boldsymbol{x_{1,3}}, x_{1,4} \end{pmatrix} \right\}, \\ \left\{ \begin{pmatrix} x_{2,4}; x_{1,4}, \boldsymbol{x_{3,4}}, x_{2,3} \end{pmatrix}, & \begin{pmatrix} x_{2,1}; \boldsymbol{x_{2,2}}, \boldsymbol{x_{2,4}}, x_{2,3} \end{pmatrix} \right\}, \\ \left\{ \begin{pmatrix} x_{3,4}; \boldsymbol{x_{1,4}}, \boldsymbol{x_{3,1}}, x_{4,4} \end{pmatrix}, & \begin{pmatrix} x_{3,3}; x_{2,3}, x_{3,4}, \boldsymbol{x_{3,1}} \end{pmatrix} \right\}, \\ \left\{ \begin{pmatrix} x_{3,2}; x_{2,2}, x_{3,3}, x_{3,4} \end{pmatrix}, & \begin{pmatrix} x_{3,1}; x_{2,1}, x_{4,1}, x_{3,2} \end{pmatrix} \right\}.$$

From the last $4S_4$ we have either $\{3S_4, 1P_4\}$ or $\{1S_4, 3P_4\}$ or $\{4P_4\}$ as follows:

 $\begin{cases} (x_{3,2}; x_{2,2}, x_{3,3}, x_{3,4}), & (x_{3,1}; x_{2,1}, x_{4,1}, x_{3,2}), \\ (x_{3,4}; x_{1,4}, x_{3,3}, x_{4,4}), & x_{2,3}x_{3,3}x_{3,1}x_{3,4} \end{cases}$ or $\begin{cases} (x_{3,1}; x_{2,1}, x_{3,4}, x_{3,3}), & x_{2,2}x_{3,2}x_{3,1}x_{4,1}, \\ x_{1,4}x_{3,4}x_{3,2}x_{3,3}, & x_{2,3}x_{3,3}x_{3,4}x_{4,4} \end{cases}$ or $\begin{cases} x_{2,2}x_{3,2}x_{3,1}x_{4,1}, & x_{2,3}x_{3,3}x_{3,4}x_{4,4}, \\ x_{3,4}x_{3,2}x_{3,3}x_{3,1}, & x_{1,4}x_{3,4}x_{3,1}x_{2,1} \end{cases} .$

By Remark 1.2, required number of paths and stars for remaining choices of p and q can be obtained from the paired stars given above.

Lemma 3.9. There exists a (3; p, q)-decomposition of $K_3 \Box K_3$, for every admissible pair (p, q) of nonnegative integers with $3(p + q) = |E(K_3 \Box K_3)|$ and $p \neq 0$.

Proof. Let $V(K_3 \Box K_3) = \{x_{i,j} : 1 \le i \le 3, 1 \le j \le 3\}$. First we decompose $K_3 \Box K_3$ into $5S_4$ and $1P_4$ as follows:

$$\{ (x_{3,2}; \mathbf{x_{3,1}}, \mathbf{x_{2,2}}, x_{3,3}), (x_{1,2}; \mathbf{x_{2,2}}, x_{3,2}, x_{1,3}) \}, \\ \{ (x_{2,1}; \mathbf{x_{1,1}}, \mathbf{x_{2,3}}, x_{2,2}), (x_{2,3}; x_{1,3}, \mathbf{x_{3,3}}, x_{2,2}) \}, \\ \{ (x_{1,1}; x_{1,2}, x_{1,3}, x_{3,1}), x_{1,3}x_{3,3}x_{3,1}x_{2,1} \}.$$

The graphs in the last bracket has a P_4 decomposition as $\{x_{1,1}x_{1,3}x_{3,3}x_{3,1}, x_{2,1}x_{3,1}x_{1,1}x_{1,2}\}$. By Remark 1.2, required number of paths and stars for remaining choices of p and q can be obtained from the paired stars given above.

Lemma 3.10. There exists a (3; p, q)-decomposition of $K_3 \Box K_2$, for every admissible pair (p, q) of nonnegative integers with $3(p + q) = |E(K_3 \Box K_2)|$ and $p \neq 0$.

Proof. Let $V(K_3 \Box K_2) = \{x_{i,j} : 1 \le i \le 3, 1 \le j \le 2\}$. We prove $K_3 \Box K_2$ has a (3; p, q)-decomposition as follows:

- 1. p = 1, q = 2. The required paths and stars are $x_{3,1}x_{2,1}x_{2,2}x_{1,2}$ and $(x_{1,1}; x_{1,2}, x_{2,1}, x_{3,1}), (x_{3,2}; x_{3,1}, x_{2,2}, x_{1,2})$ respectively.
- 2. p = 2, q = 1. The required paths and stars are $x_{2,1}x_{2,2}x_{1,2}x_{3,2}$, $x_{2,2}x_{3,2}x_{3,1}x_{2,1}$ and $(x_{1,1}; x_{1,2}, x_{2,1}, x_{3,1})$ respectively.
- 3. p = 3, q = 0. The required paths are $x_{3,2}x_{3,1}x_{1,1}x_{2,1}$, $x_{1,1}x_{1,2}x_{3,2}x_{2,2}$, $x_{3,1}x_{2,1}x_{2,2}x_{1,2}$.

Lemma 3.11. There exists a (3; p, q)-decomposition of $K_6 \Box K_2$, for every admissible pair (p, q) of nonnegative integers with $3(p+q) = |E(K_6 \Box K_2)|$.

Proof. Let $V(K_6 \Box K_2) = \{x_{i,j} : 1 \le i \le 6, 1 \le j \le 2\}$. We can write

$$\begin{aligned} K_6 \Box K_2 &= (K_6 \setminus \{P_{1,1}, P_{1,2}\}) \oplus (K_6 \setminus \{P_{2,1}, P_{2,2}\}) \\ &\oplus (P_{1,1} \oplus P_{1,2} \oplus P_{2,1} \oplus P_{2,2} \oplus 6K_2), \end{aligned}$$

where $P_{1,1} = x_{3,1}x_{4,1}x_{6,1}x_{5,1}$, $P_{1,2} = x_{3,1}x_{5,1}x_{1,1}x_{6,1}$, $P_{2,1} = x_{3,2}x_{1,2}x_{2,2}x_{5,2}$, $P_{2,2} = x_{1,2}x_{6,2}x_{2,2}x_{3,2}$. Now, by Examples 1 and 2, $K_6 \setminus \{P_{1,1}, P_{1,2}\}$ and $K_6 \setminus \{P_{2,1}, P_{2,2}\}$ have a (3; p, q)-decomposition. We can prove $(P_{1,1} \oplus P_{1,2} \oplus P_{2,1} \oplus P_{2,2} \oplus 6K_2)$ has a (3; p, q)-decomposition as in Lemma 3.1. Hence $K_6 \Box K_2$ has a (3; p, q)-decomposition. \Box

Theorem 3.12. The graph $K_m \Box K_n$ has a (3; p, q)-decomposition for every admissible pair (p, q) of nonnegative integers with $3(p + q) = E(K_m \Box K_n)$ if and only if $mn(m + n - 2) \equiv 0 \pmod{6}$.

Proof. Necessity. Since $K_m \Box K_n$ is (m + n - 2)-regular with mn vertices, the necessity follows from Lemma 2.5.

Sufficiency. To construct the required decomposition, we consider the following two cases.

 $Case(1) m, n \equiv 0 \text{ or } 1 \pmod{3}.$

We can write $K_m \Box K_n = nK_m \oplus mK_n$. By Theorem 1.2, K_m and K_n have a (3; p, q)-decomposition for $m, n \ge 6$. For m, n < 6, $K_m \Box K_n$ has a (3; p, q)-decomposition, by Lemmas 3.7 to 3.9.

Without loss of generality, assume that m < 6 and n > 6. To construct the required decomposition, we consider the following four subcases.

Subcase 1(i) m = 3 and n = 3k.

If n = 6l and $l \in \mathbb{Z}^+$, then we can write $K_m \Box K_n = l(K_3 \Box K_6) \oplus \frac{3l(l-1)}{2}K_{6,6}$. By Theorem 1.1 and Lemma 3.3, $K_{6,6}$ and $K_3 \Box K_6$ have a (3; p, q)-decomposition. Hence by Remark 1.1, $K_m \Box K_n$ has a (3; p, q)-decomposition.

If n = 6l + 3 and $l \in \mathbb{Z}^+$, then we can write $K_m \Box K_n = l(K_3 \Box K_6) \oplus (K_3 \Box K_3) \oplus \frac{3l(l-1)}{2} K_{6,6} \oplus 3lK_{3,6}$. By Lemma 3.3 and Theorem 1.1, $K_3 \Box K_6$, $K_{6,6}$ and $K_{3,6}$ have a (3; p, q)-decomposition. Also by Lemma 3.9, $K_3 \Box K_3$ has a (3; p, q)-decomposition with $p \neq 0$. Hence by Remark 1.1, $K_m \Box K_n$ has a (3; p, q)-decomposition with $p \neq 0$. For p = 0, consider $K_m \Box K_n$ as $(l-1)(K_3 \Box K_6) \oplus (K_3 \Box K_9) \oplus \frac{3(l-1)(l-2)}{2} K_{6,6} \oplus 3(l-1)K_{6,9}$. By Lemma 3.3 and Theorem 1.1, $K_3 \Box K_6$, $K_{6,6}$ and $K_{6,9}$ have a (3; p, q)-decomposition. So it is enough to prove that $K_3 \Box K_9$ possess a S_4 -decomposition. Let $V(K_3 \Box K_9) = \{x_{i,j}: 1 \leq i \leq 3, 1 \leq j \leq 9\}$. Now,

 $(x_{i,j}; x_{i+1,j}, x_{i,j+1}x_{i,j+2}),$

where i = 1, 2, 3 and $j = 1, 2, \dots, 9$ and

$$\begin{array}{ll} (x_{i,1};x_{i,4},x_{i,5},x_{i,7}), & (x_{i,2};x_{i,6},x_{i,7},x_{i,8}), \\ (x_{i,3};x_{i,7},x_{i,8},x_{i,9}), & (x_{i,4};x_{i,7},x_{i,8},x_{i,9}), \\ (x_{i,5};x_{i,2},x_{i,8},x_{i,9}), & (x_{i,6};x_{i,1},x_{i,3},x_{i,9}), \end{array}$$

where i = 1, 2, 3 and the subscripts in the first coordinate are taken modulo 3 with residues $\{1, 2, 3\}$ and the subscripts in the second coordinate are taken modulo 9 with residues $\{1, 2, \dots, 9\}$, gives a required S_4 -decomposition of $K_3 \square K_9$. Hence by Remark 1.1, $K_m \square K_n$ has a (3; p, q)-decomposition.

Subcase 1(ii) m = 3 and n = 3k + 1.

If n = 7, then we can write $K_m \Box K_n = (K_3 \Box K_4) \oplus (K_3 \Box K_3) \oplus 3K_{3,4}$. By Lemma 3.7 and Theorem 1.1, $K_3 \Box K_4$ and $K_{3,4}$ have a (3; p, q)-decomposition. Also by Lemma 3.9, $K_3 \Box K_3$ has a (3; p, q)-decomposition with $p \neq 0$. Hence by Remark 1.1, $K_m \Box K_n$ has a (3; p, q)-decomposition with $p \neq 0$. For p = 0 the S_4 -decomposition of $K_3 \Box K_7$ with

$$V(K_3 \Box K_7) = \{x_{i,j} : 1 \le i \le 3, \ 1 \le j \le 7\}$$

is given below.

$$\begin{array}{ll} (x_{1,1};x_{1,2},x_{2,1},x_{3,1}), & (x_{3,1};x_{2,1},x_{3,1},x_{3,2}), & (x_{1,2};x_{2,2},x_{1,3},x_{1,4}), \\ (x_{3,2};x_{2,2},x_{1,2},x_{3,3}), & (x_{1,3};x_{1,4},x_{2,3},x_{3,3}), & (x_{3,3};x_{2,3},x_{3,4},x_{3,5}), \\ (x_{1,4};x_{2,4},x_{1,1},x_{1,5}), & (x_{3,4};x_{3,5},x_{1,4},x_{2,4}), & (x_{1,5};x_{1,2},x_{1,6},x_{2,5}), \\ (x_{1,6};x_{1,2},x_{1,4},x_{2,6}), & (x_{1,7};x_{1,2},x_{1,6},x_{2,7}), & (x_{2,5};x_{2,6},x_{2,7},x_{3,5}), \\ (x_{2,6};x_{2,4},x_{2,7},x_{3,6}), & (x_{2,7};x_{2,3},x_{2,4},x_{3,7}), & (x_{3,5};x_{3,2},x_{3,6},x_{1,5}), \\ (x_{3,6};x_{3,3},x_{3,4},x_{1,6}), & (x_{3,7};x_{3,5},x_{3,6},x_{1,7}), & (x_{1,1};x_{1,5},x_{1,6},x_{1,7}), \\ (x_{1,3};x_{1,1},x_{1,5},x_{1,6}), & (x_{1,7};x_{1,3},x_{1,4},x_{1,5}), & (x_{2,1};x_{2,3},x_{2,6},x_{2,7}), \\ (x_{2,2};x_{2,1},x_{2,6},x_{2,7}), & (x_{2,3};x_{2,2},x_{2,4},x_{2,6}), & (x_{2,4};x_{2,1},x_{2,2},x_{2,5}), \\ (x_{2,5};x_{2,1},x_{2,2},x_{2,3}), & (x_{3,1};x_{3,4},x_{3,5},x_{3,6}), & (x_{3,2};x_{3,4},x_{3,6},x_{3,7}), \\ (x_{3,7};x_{3,1},x_{3,3},x_{3,4}). \end{array}$$

If n = 6l + 1 and $l \ge 2$ is an integer, then we can write

$$K_m \Box K_n = (K_3 \Box K_{6(l-1)+3}) \oplus (K_3 \Box K_4) \oplus 3K_{6(l-1)+3,4}.$$

By Lemma 3.7 and Theorem 1.1, $K_3 \Box K_4$ and $K_{6(l-1)+3,4}$ have a (3; p, q)-decomposition. Also by Subcase 1(i), $K_3 \Box K_{6(l-1)+3}$ has a (3; p, q)-decomposition. Hence by Remark 1.1, $K_m \Box K_n$ has a (3; p, q)-decomposition.

If n = 6l + 4 and $l \ge 1$ is an integer, then we can write $K_m \Box K_n = (K_3 \Box K_{6l}) \oplus (K_3 \Box K_4) \oplus 3K_{6l,4}$. By Lemma 3.7 and Theorem 1.1, $K_3 \Box K_4$ and $K_{6l,4}$ have a (3; p, q)-decomposition. Also by Subcase 1(i), $K_3 \Box K_{6l}$ has a (3; p, q)-decomposition. Hence by Remark 1.1, $K_m \Box K_n$ has a (3; p, q)-decomposition.

Subcase 1(iii) m = 4 and n = 3k.

We can write

$$K_m \Box K_n = k(K_4 \Box K_3) \oplus 2k(k-1)K_{3,3}.$$

By Theorem 1.1 and Lemma 3.7, $K_{3,3}$ and $K_4 \Box K_3$ have a (3; p, q)-decomposition. Hence by Remark 1.1, $K_m \Box K_n$ has a (3; p, q)-decomposition.

Subcase 1(iv) m = 4 and n = 3k + 1.

We can write

$$K_m \Box K_n = (k-1)(K_4 \Box K_3) \oplus (K_4 \Box K_4)$$

$$\oplus 2(k-1)(k-2)K_{3,3} \oplus 4(k-1)K_{3,4}.$$

By Theorem 1.1, $K_{3,3}$ and $K_{3,4}$ have a (3; p, q)-decomposition. Also by Lemmas 3.7 and 3.8, $K_4 \square K_3$ and $K_4 \square K_4$ have a (3; p, q)-decomposition. Hence by Remark 1.1, $K_m \square K_n$ has a (3; p, q)-decomposition.

Case(2) $m \equiv 0 \pmod{3}, n \equiv 2 \pmod{3}$.

We can write

$$K_m \Box K_n = nK_m \oplus mK_n.$$

To construct the required decomposition, we consider the following four subcases.

Subcase 2(i) $m \equiv 0 \pmod{6}$, $n \equiv 5 \pmod{6}$.

Let $m = 6k, \ k \in \mathbb{Z}^+$ and $n = 6l + 5, \ l \ge 0$ be an integer. We can write

$$K_m \Box K_n = (K_{6k} \Box K_{6l}) \oplus (K_{6k} \Box K_5) \oplus 6kK_{6l,5} = (K_{6k} \Box K_{6l}) \oplus k(K_6 \Box K_5) \oplus \frac{5k(k-1)}{2}K_{6,6} \oplus 6kK_{6l,5}.$$

By Lemma 3.1 and Theorem 1.1, $K_6 \Box K_5$, $K_{6,6}$ and $K_{6l,5}$ have a (3; p, q)-decomposition. Also by Case 1, $K_{6k} \Box K_{6l}$ has a (3; p, q)-decomposition. Hence by Remark 1.1, $K_m \Box K_n$ has a (3; p, q)-decomposition.

Subcase 2(ii) $m \equiv 0 \pmod{6}, n \equiv 2 \pmod{6}$.

When m = 6k, $k \in \mathbb{Z}^+$ and n = 2, $K_m \Box K_n = k(K_6 \Box K_2) \oplus k(k - 1)K_{6,6}$. By Theorem 1.1 and Lemma 3.11, $K_m \Box K_n$ has a (3; p, q)-decomposition. When n > 2, let m = 6k, n = 6l + 2, $k, l \in \mathbb{Z}^+$. We can write

$$K_m \Box K_n = (K_{6k} \Box K_{6(l-1)}) \oplus (K_{6k} \Box K_8) \oplus 6kK_{6(l-1),8}$$

= $(K_{6k} \Box K_{6(l-1)}) \oplus k(K_6 \Box K_8) \oplus 4k(k-1)K_{6,6} \oplus 6kK_{6(l-1),8}$

By Theorem 1.1 and Lemma 3.6, $K_{6,6}$, $K_{6(l-1),8}$ and $K_6 \Box K_8$ have a (3; p, q)-decomposition. Also by Case 1, $K_{6k} \Box K_{6(l-1)}$ has a (3; p, q)-decomposition. Hence by Remark 1.1, $K_m \Box K_n$ has a (3; p, q)-decomposition.

Subcase 2(iii) $m \equiv 3 \pmod{6}, n \equiv 5 \pmod{6}$.

Let m = 6k + 3 and n = 6l + 5, $k, l \ge 0$ be integers. We can write

$$\begin{split} K_m \Box K_n &= (K_{6k+3} \Box K_{6l}) \oplus (K_{6k+3} \Box K_5) \oplus (6k+3) K_{6l,5} \\ &= (K_{6k+3} \Box K_{6l}) \oplus k (K_6 \Box K_5) \oplus (K_3 \Box K_5) \\ &\oplus \frac{5k(k-1)}{2} K_{6,6} \oplus 5k K_{3,6} \oplus (6k+3) K_{6l,5}. \end{split}$$

By Lemmas 3.1, 3.2, 3.3 and Theorem 1.1, $K_6 \Box K_5$, $K_3 \Box K_6$, $K_3 \Box K_5$, $K_{6,6}$, $K_{3,6}$ and $K_{6l,5}$ have a (3; p, q)-decomposition. Also by Case 1, $K_{6k+3} \Box K_{6l}$ has a (3; p, q)-decomposition. Hence by Remark 1.1, $K_m \Box K_n$ has a (3; p, q)-decomposition.

Subcase 2(iv) $m \equiv 3 \pmod{6}, n \equiv 2 \pmod{6}$.

When m = 3 and n = 2, $K_m \Box K_n$ has a (3; p, q)-decomposition, by Lemma 3.10.

When m = 6k + 3 with $k \in \mathbb{Z}^+$ and n = 2, $K_m \Box K_n = (K_{6k} \Box K_2) \oplus$ $(K_3 \Box K_2) \oplus 2K_{6k,3}$. By Theorem 1.1 and Subcase 2(ii), $K_{6k,3}$ and $K_{6k} \square K_2$ have a (3; p, q)-decomposition. Also by Lemma 3.11, $K_3 \square K_2$ has a (3; p, q)-decomposition with $p \neq 0$. Hence by Remark 1.1, $K_m \Box K_n$ has a (3; p, q)-decomposition with $p \neq 0$. For p = 0, consider $K_m \Box K_n$ as $(K_{6(k-1)} \Box K_2) \oplus (K_9 \Box K_2) \oplus 2K_{(6k-1),3}$. By Theorem 1.1 and Subcase 2(ii), $K_{6(k-1),3}$ and $K_{6(k-1)} \square K_2$ have a (3; p, q)-decomposition. So it is enough to prove that $K_9 \square K_2 (\cong K_2 \square K_9)$ has a S_4 decomposition. Consider $K_2 \square K_9$ as $9K_2 \oplus 2K_9 = (9K_2 \oplus K_9) \oplus K_9$. Now, K_9 has a S_4 -decomposition, by Theorem 1.2 with p = 0. Let $V(K_2 \Box K_9) = \{x_{i,j} : 1 \le i \le 2, \ 1 \le j \le 9\}.$ Now,

$$\begin{array}{ll} (x_{1,1};x_{1,4},x_{1,5},x_{1,7}), & (x_{1,2};x_{1,6},x_{1,7},x_{1,8}), \\ (x_{1,3};x_{1,7},x_{1,8},x_{1,9}), & (x_{1,4};x_{1,7},x_{1,8},x_{1,9}), \\ (x_{1,5};x_{1,2},x_{1,8},x_{1,9}), & (x_{1,6};x_{1,1},x_{1,3},x_{1,9}) \end{array}$$

and $(x_{1,j}; x_{2,j}, x_{1,j+1}x_{1,j+2})$, for $j = 1, 2, \dots, 9$, where the subscripts in the second coordinate are taken modulo 9 with residues $\{1, 2, \dots, 9\}$, gives the S_4 -decomposition of $9K_2 \oplus K_9$. Hence $K_m \Box K_n$ has a (3; p, q)-decomposition.

When n > 2, let m = 6k + 3 and n = 6l + 2, where $k \ge 0$, l > 0 are integers. We can write

$$\begin{split} K_m \Box K_n &= (K_{6k} \Box K_{6l+2}) \oplus (K_3 \Box K_{(6l+2)}) \oplus (6l+2) K_{3,6k} \\ &= (K_{6k} \Box K_{6l+2}) \oplus (K_3 \Box K_{6(l-1)}) \oplus (K_3 \Box K_8) \\ &\oplus 3K_{6(l-1),8} \oplus (6l+2) K_{3,6k}. \end{split}$$

By Lemma 3.5 and Theorem 1.1, $K_3 \Box K_8$, $K_{6(l-1),8}$ and $K_{3,6k}$ have a (3; p, q)-decomposition. Also by Case 1 and Subcase 2(ii), $K_3 \Box K_{6(l-1)}$ and $K_{6k} \square K_{6l+2}$ have a (3; p, q)-decomposition. Hence by Remark 1.1, $K_m \Box K_n$ has a (3; p, q)-decomposition.

(3; p, q)-decomposition of $K_m \times K_n$ 4

In this section we investigate the existence of (3; p, q)-decomposition of tensor product of complete graphs.

Lemma 4.1. Let G be an S₄-decomposible graph and $p, q \ge 0$ be integers with $3(p+q) = |E(G \times K_n)|$ and $p \neq 1$. Then $G \times K_n$ has a (3; p, q)-decomposition for all odd n and every admissible pair (p,q).

Proof. Let $V(G \times K_n) = \{x_{g,i} : g \in V(G) \text{ and } 1 \leq i \leq n\}$. Since G is S_4 -decomposible graph, for each star (a; u, v, w) in G, we have the following pair of stars in $G \times K_n$:

• for each $j \in \{1, 3, \cdots, n-2\}$

$$\{(x_{a,j}; x_{u,i}, \boldsymbol{x_{v,i}}, \boldsymbol{x_{w,i}}), (x_{a,j+1}; x_{u,i}, x_{v,i}, \boldsymbol{x_{w,i}})\},\$$

where $1 \le i \le n$ and $i \ne j, j+1$;

• for $1 \leq i \leq n-1$,

$$\{(x_{a,n}; x_{u,i-1}, x_{v,i-1}, x_{w,i-1}), (x_{a,i}; x_{u,i-1}, x_{v,i-1}, x_{w,i-1})\},\$$

if i is even and

$$\{(x_{a,n}; x_{u,i+1}, x_{v,i+1}, x_{w,i+1}), (x_{a,i}; x_{u,i+1}, x_{v,i+1}, x_{w,i+1})\},\$$

if i is odd.

Then by applying remark 1.2 to the pairs of stars mentioned above we obtained all possible even number of paths and stars of $G \times K_n$. Now, consider $\{(x_{a,1}; x_{u,2}, x_{v,2}, x_{w,2}), (x_{a,1}; x_{u,3}, x_{v,3}, x_{w,3}), (x_{a,2}; x_{u,3}, x_{v,3}, x_{w,3})\}$ and decompose it into $3P_4$ as given below. $\{x_{u,2}x_{a,1}x_{u,3}x_{a,2}, x_{v,2}x_{a,1}x_{v,3}x_{a,2}, x_{w,2}x_{a,1}x_{w,3}x_{a,2}\}$. The remaining number of paths and stars can be obtained from the remaining pairs of stars given above except when p = 1. \Box

Lemma 4.2. There exists a (3; p, q)-decomposition of $K_3 \times K_3$, for every admissible pair (p,q) of nonnegative integers with $3(p+q) = |E(K_3 \times K_3)|$.

Proof. Let $V(K_3 \times K_3) = \{x_{i,j} : 1 \le i \le 3, 1 \le j \le 3\}$. Now, $K_3 \times K_3$ has a (3; p, q)-decomposition as follows:

- 1. p = 0, q = 6. The required stars are $(x_{1,1}; x_{2,2}, x_{2,3}, x_{3,3}), (x_{1,2}; x_{2,1}, x_{2,3}, x_{3,1}), (x_{1,3}; x_{2,1}, x_{2,2}, x_{3,2}),$ $(x_{3,1}; x_{1,3}, x_{2,2}, x_{2,3}), (x_{3,2}; x_{1,1}, x_{2,1}, x_{2,3}), (x_{3,3}; x_{1,2}, x_{2,1}, x_{2,2}).$
- 2. p = 1, q = 5. The required path and stars are $x_{2,2}x_{1,1}x_{2,3}x_{1,2}$ and $(x_{2,1}; x_{1,2}, x_{3,2}, x_{3,3})$, $(x_{1,3}; x_{2,1}, x_{2,2}, x_{3,1})$, $(x_{3,1}; x_{1,2}, x_{2,2}, x_{2,3})$, $(x_{3,2}; x_{1,1}, x_{1,3}, x_{2,3})$, $(x_{3,3}; x_{1,2}, x_{1,1}, x_{2,2})$ respectively.
- 3. p = 2, q = 4. The required paths and stars are $x_{3,3}x_{1,1}x_{2,3}x_{1,2}$, $x_{1,1}x_{2,2}x_{3,3}x_{1,2}$ and $(x_{2,1}; x_{1,2}, x_{3,2}, x_{3,3})$, $(x_{1,3}; x_{2,1}, x_{2,2}, x_{3,1})$, $(x_{3,1}; x_{1,2}, x_{2,2}, x_{2,3})$, $(x_{3,2}; x_{1,1}, x_{1,3}, x_{2,3})$ respectively.

- 4. p = 3, q = 3. The required paths and stars are $x_{3,3}x_{1,1}x_{2,3}x_{1,2}$, $x_{2,2}x_{3,3}x_{1,2}x_{3,1}$, $x_{2,3}x_{3,1}x_{2,2}x_{1,1}$ and $(x_{2,1}; x_{1,2}, x_{3,2}, x_{3,3})$, $(x_{1,3}; x_{2,1}, x_{2,2}, x_{3,1})$, $(x_{3,2}; x_{1,1}, x_{1,3}, x_{2,3})$ respectively.
- 5. p = 4, q = 2. The required paths and stars are $x_{3,3}x_{1,1}x_{2,3}x_{1,2}$, $x_{2,2}x_{3,3}x_{1,2}x_{3,1}$, $x_{3,1}x_{2,2}x_{1,1}x_{3,2}$, $x_{3,1}x_{2,3}x_{3,2}x_{1,3}$ and $(x_{2,1}; x_{1,2}, x_{3,2}, x_{3,3})$, $(x_{1,3}; x_{2,1}, x_{2,2}, x_{3,1})$ respectively.
- 6. p = 5, q = 1. The required paths and star are $x_{3,3}x_{1,1}x_{2,3}x_{1,2}$, $x_{2,2}x_{3,3}x_{1,2}x_{3,1}$, $x_{3,1}x_{2,2}x_{1,1}x_{3,2}$, $x_{2,3}x_{3,2}x_{1,3}x_{2,2}$, $x_{2,1}x_{1,3}x_{3,1}x_{2,3}$ and $(x_{2,1}; x_{1,2}, x_{3,2}, x_{3,3})$ respectively.
- 7. p = 6, q = 0. The required paths are $x_{1,1}x_{2,3}x_{1,2}x_{2,1}, x_{3,2}x_{2,1}x_{3,3}x_{1,1}, x_{2,2}x_{3,3}x_{1,2}x_{3,1}, x_{3,1}x_{2,2}x_{1,1}x_{3,2}, x_{2,3}x_{3,2}x_{1,3}x_{2,2}, x_{2,1}x_{1,3}x_{3,1}x_{2,3}.$

Lemma 4.3. There exists a (3; p, q)-decomposition of $K_3 \times K_4$, for every admissible pair (p, q) of nonnegative integers with $3(p+q) = |E(K_3 \times K_4)|$.

Proof. Let $V(K_3 \times K_4) = \{x_{i,j} : 1 \le i \le 3, 1 \le j \le 4\}$. First we decompose $K_3 \times K_4$ into $12S_4$ as follows:

 $\{ (x_{1,1}; x_{2,2}, x_{2,3}, x_{2,4}), (x_{1,2}; x_{2,1}, x_{2,3}, x_{2,4}) \}, \\ \{ (x_{2,1}; x_{3,2}, x_{3,3}, x_{3,4}), (x_{2,2}; x_{3,1}, x_{3,3}, x_{3,4}) \}, \\ \{ (x_{2,3}; x_{3,1}, x_{3,2}, x_{3,4}), (x_{2,4}; x_{3,1}, x_{3,2}, x_{3,3}) \}, \\ \{ (x_{3,3}; x_{1,1}, x_{1,2}, x_{1,4}), (x_{3,4}; x_{1,1}, x_{1,2}, x_{1,3}) \}, \\ \{ (x_{3,1}; x_{1,2}, x_{1,3}, x_{1,4}), (x_{3,2}; x_{1,1}, x_{1,3}, x_{1,4}) \}, \\ \{ (x_{1,3}; x_{2,1}, x_{2,2}, x_{2,4}), (x_{1,4}; x_{2,1}, x_{2,2}, x_{2,3}) \}.$

Now, the last $3S_4$ can be decomposed into $3P_4$ as follows:

 $\{x_{1,1}x_{3,2}x_{1,3}x_{2,4}, x_{3,2}x_{1,4}x_{2,1}x_{1,3}, x_{1,3}x_{2,2}x_{1,4}x_{2,3}\}.$

Decomposition for the remaining choices of $p \neq 1$ can be obtained from the paired stars given above, by Remark 1.2. When p = 1, the required path and stars are

 $\begin{array}{ll} (x_{1,1};x_{3,3},x_{2,3},x_{3,2}), & (x_{2,4};x_{1,1},x_{1,2},x_{3,3}), & (x_{2,1};x_{1,2},x_{1,3},x_{1,4}), \\ (x_{2,3};x_{1,2},x_{1,4},x_{3,2}), & (x_{2,1};x_{3,2},x_{3,3},x_{3,4}), & (x_{3,1};x_{2,2},x_{2,3},x_{2,4}), \\ (x_{3,1};x_{1,2},x_{1,3},x_{1,4}), & (x_{3,2};x_{1,3},x_{1,4},x_{2,4}), & (x_{3,3};x_{2,2},x_{1,2},x_{1,4}), \\ (x_{1,3};x_{2,2},x_{3,4},x_{2,4}), & (x_{3,4};x_{2,2},x_{1,2},x_{2,3}), & x_{3,4}x_{1,1}x_{2,2}x_{1,4}. \end{array}$

Lemma 4.4. There exists a (3; p, q)-decomposition of $K_3 \times K_5$, for every admissible pair (p, q) of nonnegative integers with $3(p+q) = |E(K_3 \times K_5)|$.

Proof. Let $V(K_3 \times K_5) = \{x_{i,j} : 1 \le i \le 3, 1 \le j \le 5\}$. First we decompose $K_3 \times K_5$ into $20S_4$ as follows:

$$\{ (x_{1,1}; x_{2,2}, x_{2,3}, x_{2,4}), (x_{1,3}; x_{2,1}, x_{2,2}, x_{2,4}) \}, \\ \{ (x_{1,1}; x_{3,2}, x_{3,3}, x_{3,4}), (x_{1,3}; x_{3,1}, x_{3,2}, x_{3,4}) \}, \\ \{ (x_{1,4}; x_{2,1}, x_{2,5}, x_{2,2}), (x_{1,5}; x_{2,1}, x_{2,2}, x_{2,4}) \}, \\ \{ (x_{1,4}; x_{3,1}, x_{3,2}, x_{3,5}), (x_{1,5}; x_{3,1}, x_{3,2}, x_{3,4}) \}, \\ \{ (x_{2,3}; x_{1,4}, x_{1,5}, x_{3,1}), (x_{3,3}; x_{1,4}, x_{1,5}, x_{2,1}) \}, \\ \{ (x_{2,5}; x_{1,1}, x_{1,2}, x_{1,3}), (x_{3,5}; x_{1,1}, x_{1,2}, x_{1,3}) \}, \\ \{ (x_{2,1}; x_{3,2}, x_{3,4}, x_{3,5}), (x_{2,2}; x_{3,1}, x_{3,4}, x_{3,5}) \}, \\ \{ (x_{2,4}; x_{3,1}, x_{3,2}, x_{3,5}), (x_{2,5}; x_{3,1}, x_{3,2}, x_{3,4}) \}, \\ \{ (x_{2,3}; x_{3,2}, x_{3,4}, x_{3,5}), (x_{3,3}; x_{2,2}, x_{2,4}, x_{2,5}) \}, \\ \{ (x_{1,2}; x_{2,1}, x_{2,3}, x_{2,4}), (x_{1,2}; x_{3,1}, x_{3,3}, x_{3,4}) \}.$$

Now, the last $4S_4$ can be decomposed into either $\{1P_4, 3S_4\}$ or $\{2P_4, 2S_4\}$ or $\{3P_4, 1S_4\}$ or $\{4P_4\}$ as follows:

$$\begin{cases} x_{3,3}x_{1,2}x_{3,4}x_{2,3}, & (x_{2,3};x_{3,2},x_{1,2},x_{3,5}), \\ (x_{3,3};x_{2,2},x_{2,4},x_{2,5}), & (x_{1,2};x_{2,1},x_{3,1},x_{2,4}) \end{cases}$$
or
$$\begin{cases} x_{2,2}x_{3,3}x_{1,2}x_{3,1}, & x_{2,5}x_{3,3}x_{2,4}x_{1,2}, \\ (x_{2,3};x_{3,2},x_{3,4},x_{3,5}), & (x_{1,2};x_{2,1},x_{2,3},x_{3,4}) \end{cases}$$
or
$$\begin{cases} x_{2,2}x_{3,3}x_{1,2}x_{3,1}, & x_{2,5}x_{3,3}x_{2,4}x_{1,2}, \\ x_{2,3}x_{3,4}x_{1,2}x_{2,1}, & (x_{2,3};x_{3,2},x_{1,2},x_{3,5}) \end{cases}$$
or
$$\begin{cases} x_{2,2}x_{3,3}x_{1,2}x_{3,1}, & x_{2,5}x_{3,3}x_{2,4}x_{1,2}, \\ x_{2,3}x_{3,4}x_{1,2}x_{2,1}, & (x_{2,3};x_{3,2},x_{1,2},x_{3,5}) \end{cases}$$
or
$$\begin{cases} x_{2,2}x_{3,3}x_{1,2}x_{3,1}, & x_{2,5}x_{3,3}x_{2,4}x_{1,2}, \\ x_{2,3}x_{3,4}x_{1,2}x_{2,1}, & (x_{2,3};x_{3,2},x_{1,2},x_{3,5}) \end{cases}$$

By Remark 1.2, required number of paths and stars for the remaining choices of p and q can be obtained from the paired stars given above. \Box

Lemma 4.5. There exists a (3; p, q)-decomposition of $K_3 \times K_6$, for every admissible pair (p, q) of nonnegative integers with $3(p+q) = |E(K_3 \times K_6)|$.

Proof. We can write $K_3 \times K_6 = (K_3 \times K_3) \oplus (K_3 \times K_3) \oplus (K_3 \times K_{3,3})$. By Theorem 1.1 and Lemma 4.1, $K_3 \times K_{3,3} \cong K_{3,3} \times K_3$) has a (3; p, q)-decomposition with $p \neq 1$. Also, by Lemma 4.2, we have a (3; p, q)-decomposition of $K_3 \times K_3$. Hence by Remark 1.1, the graph $K_3 \times K_6$ has the desired decomposition. **Lemma 4.6.** There exists a (3; p, q)-decomposition of $K_3 \times K_8$, for every admissible pair (p, q) of nonnegative integers with $3(p+q) = |E(K_3 \times K_8)|$.

Proof. We know that $K_3 \times K_8 = K_{8,8,8} \setminus E(8K_3)$. Let $V(K_{8,8,8}) = X(= \{x_{1,j} : 1 \le j \le 8\}) \cup Y(= \{x_{2,j} : 1 \le j \le 8\}) \cup Z(= \{x_{3,j} : 1 \le j \le 8\})$ and $X = X_1 \cup X_2, Y = Y_1 \cup Y_2, Z = Z_1 \cup Z_2$, where $X_1 = \{x_{1,j} : 1 \le j \le 4\}, X_2 = \{x_{1,j} : 5 \le j \le 8\}, Y_1 = \{x_{2,j} : 1 \le j \le 4\}, Y_2 = \{x_{2,j} : 5 \le j \le 8\}, Z_1 = \{x_{3,j} : 1 \le j \le 4\}, Z_2 = \{x_{3,j} : 5 \le j \le 8\}$. We can view $K_3 \times K_8$ as $(K_{X_1,Y_1,Z_1} \setminus E(4K_3)) \oplus (K_{X_2,Y_2,Z_2} \setminus E(4K_3)) \oplus K_{X_1,Y_2} \oplus K_{Y_2,Z_1} \oplus K_{Z_1,X_2} \oplus K_{X_2,Y_1} \oplus K_{Y_1,Z_2} \oplus K_{Z_2,X_1}$. Hence $K_3 \times K_8 = G_1 \oplus G_2$, where $G_1 \cong G_2 \cong (K_{4,4,4} \setminus E(4K_3) \oplus K_{X_1,Y_2} \oplus K_{Y_2,Z_1} \oplus K_{Z_1,X_2})$. Now, $K_{4,4,4} \setminus E(4K_3) = K_3 \times K_4$ has a (3; p, q)-decomposition, by Lemma 4.3. Further $K_{X_1,Y_2} \oplus K_{Y_2,Z_1} \oplus K_{Z_1,X_2}$ and be decomposed into $16S_4$ as follows:

$$\{ (x_{1,3}; x_{2,5}, x_{2,6}, x_{2,8}), (x_{3,1}; x_{2,6}, x_{2,7}, x_{2,8}) \}, \\ \{ (x_{2,8}; x_{1,2}, x_{1,4}, x_{3,2}), (x_{2,5}; x_{3,1}, x_{1,2}, x_{1,4}) \}, \\ \{ (x_{2,5}; x_{1,1}, x_{3,2}, x_{3,3}), (x_{1,5}; x_{3,1}, x_{3,2}, x_{3,3}) \}, \\ \{ (x_{2,7}; x_{1,3}, x_{3,3}, x_{1,1}), (x_{2,8}; x_{3,4}, x_{3,3}, x_{1,1}) \}, \\ \{ (x_{3,1}; x_{1,6}, x_{1,7}, x_{1,8}), (x_{3,2}; x_{1,6}, x_{1,7}, x_{1,8}) \}, \\ \{ (x_{3,3}; x_{1,6}, x_{1,7}, x_{1,8}), (x_{2,7}; x_{1,2}, x_{1,4}, x_{3,2}) \}, \\ \{ (x_{3,4}; x_{2,7}, x_{2,5}, x_{1,5}), (x_{2,6}; x_{1,1}, x_{1,4}, x_{3,4}) \}.$$

From the last $4S_4$ we have either $\{1P_4, 3S_4\}$ or $\{3P_4, 1S_4\}$ or $\{4P_4\}$ as follows:

$$\begin{cases} x_{2,7}x_{1,4}x_{2,6}x_{1,1}, & (x_{2,6};x_{1,2},x_{3,2},x_{3,3}), \\ (x_{3,4};x_{2,6},x_{2,5},x_{1,5}), & (x_{2,7};x_{1,2},x_{3,4},x_{3,2}) \end{cases}$$
or
$$\begin{cases} x_{2,7}x_{1,4}x_{2,6}x_{1,1}, & x_{2,6}x_{1,2}x_{2,7}x_{3,4}, \\ x_{3,3}x_{2,6}x_{3,2}x_{2,7}, & (x_{3,4};x_{2,6},x_{2,5},x_{1,5}) \end{cases}$$
or
$$\begin{cases} x_{2,7}x_{1,4}x_{2,6}x_{1,1}, & x_{3,3}x_{2,6}x_{3,2}x_{2,7}, \\ x_{1,2}x_{2,7}x_{3,4}x_{2,5}, & x_{1,2}x_{2,6}x_{3,4}x_{1,5} \end{cases}$$

By Remark 1.2, required number of paths and stars for the remaining choices of p and q can be obtained from the paired stars given above. \Box

Theorem 4.7. The graph $K_m \times K_n$ has a (3; p, q)-decomposition for every admissible pair (p,q) of nonnegative integers with $3(p+q) = E(K_m \times K_n)$ if and only if $mn(m-1)(n-1) \equiv 0 \pmod{6}$, (p,q) = (2,0) when (m,n) =(2,3) or (m,n) = (3,2) and $p \neq 1$ when (m,n) = (2,4) or (m,n) = (4,2).

Proof. When m = 2 and n = 3, 4 or m = 3, 4 and n = 2, the result follows from Theorem 2.6.

Necessity. Since $K_m \times K_n$ is (n-1)(m-1)-regular with mn vertices, the necessity follows from Lemma 2.5.

Sufficiency. To construct the required decomposition, we consider the following two cases.

Case(1) $n \equiv 0 \text{ or } 1 \pmod{3}$.

The graph $K_m \times K_n$ can be viewed as edge-disjoint union of m(m-1)/2 copies of $K_{n,n} - I$. Since $n \equiv 0$ or 1 (mod 3), by Theorem 2.6, the graph $K_{n,n} - I$ has a (3; p, q)-decomposition except when (n, p) = (4, 1) or when n = 3 and q > 0. Hence by Remark 1.1, the graph $K_m \times K_n$ has the desired decomposition except (n, p) = (4, 1) and q > 0 when n = 3. We prove the required decomposition for (n, p) = (4, 1) and q > 0 when n = 3 in two subcases.

Subcase 1(i) $m \equiv 0$ or $1 \pmod{3}$.

Since $K_m \times K_n \cong K_n \times K_m$, the graph $K_n \times K_m$ can be viewed as edge-disjoint union of n(n-1)/2 copies of $K_{m,m} - I$. Since $m \equiv 0$ or 1 (mod 3), by Theorem 2.6, the graph $K_{m,m} - I$ has a (3; p, q)-decomposition except when (m, p) = (4, 1) and m = 3, q > 0. Hence by Remark 1.1, the graph $K_m \times K_n$ has the desired decomposition except when (m, p) = (4, 1) and q > 0 when m = 3. Here $K_3 \times K_3$ and $K_3 \times K_4$ have a (3; p, q)-decomposition, by Lemmas 4.2 and 4.3. So it is enough to prove the required decomposition for (m, n, p) = (4, 4, 1). We can write $K_4 \times K_4 = (K_3 \times K_4) \oplus (S_4 \times K_4)$. By Remark 1.3, $S_4 \times K_4$ has an S_4 -decomposition. Also, by Lemma 4.3, $K_3 \times K_4$ has a (3; p, q)decomposition and hence by Remark 1.1, the graph $K_4 \times K_4$ has the desired decomposition.

Subcase 1(ii) $m \equiv 2 \pmod{3}$.

When n = 4, if $m = 6k + 2, k \in \mathbb{Z}^+$, then $K_m \times K_4 = (K_8 \times K_4) \oplus (K_{6(k-1)} \times K_4) \oplus (K_{8,6(k-1)} \times K_4) = (K_8 \times S_4) \oplus (K_8 \times K_3) \oplus (K_{6(k-1)} \times K_4) \oplus (K_{8,6(k-1)} \times K_4)$. By Theorem 1.1 and Remark 1.3, $K_8 \times S_4$ and $K_{8,6(k-1)} \times K_4$ have an S_4 -decomposition. Also by Lemma 4.6, $K_8 \times K_3$ has a (3; p, q)-decomposition. Since $K_{6(k-1)} \times K_4$ has a (3; p, q)-decomposition. Since $K_{6(k-1)} \times K_4$ has a (3; p, q)-decomposition (by Subcase 1(i)), by Remark 1.1, the graph $K_m \times K_4$ has the desired decomposition.

If $m = 6k + 5, k \ge 0$ is an integer, then $K_m \times K_4 = (K_5 \times K_4) \oplus (K_{6k} \times K_4) \oplus (K_{5,6k} \times K_4) = (K_5 \times S_4) \oplus (K_5 \times K_3) \oplus (K_{6k} \times K_4) \oplus (K_{5,6k} \times K_4)$. By Theorem 1.1 and Remark 1.3, $K_5 \times S_4$ and $K_{5,6k} \times K_4$ have a S_4 -decomposition. Also by Lemma 4.4, $K_5 \times K_3$ has a (3; p, q)-decomposition. Since $K_{6k} \times K_4$ has a (3; p, q)-decomposition (by Subcase 1(i)), by Remark 1.1, the graph $K_m \times K_4$ has the desired decomposition. When n = 3, if $m = 6k+2, k \in \mathbb{Z}^+$, $K_m \times K_3 = (K_8 \times K_3) \oplus (K_{6(k-1)} \times K_3) \oplus (K_{6(k-1),8} \times K_3)$. By Lemma 4.6, $K_8 \times K_3$ has a (3; p, q)-decomposition and by Theorem 1.1 and Lemma 4.1, $K_{6(k-1),8} \times K_3$ has a (3; p, q)-decomposition with $p \neq 1$. Since $K_{6(k-1)} \times K_3$ has a (3; p, q)-decomposition (by Subcase 1(i)), by Remark 1.1, the graph $K_m \times K_3$ has the desired decomposition with $p \neq 1$. For p = 1, the required decomposition can be obtained from a (3; 1, q)-decomposition of $K_8 \times K_3$ and (3; 0, q)-decomposition of the remaining graphs.

If m = 6k+5, $k \ge 0$ is an integer, $K_m \times K_3 = (K_5 \times K_3) \oplus (K_{6k} \times K_3) \oplus (K_{6k,5} \times K_3)$. By Lemma 4.4, $K_5 \times K_3$ has a (3; p, q)-decomposition and by Theorem 1.1 and Lemma 4.1, $K_{6k,5} \times K_3$ has a (3; p, q)-decomposition with $p \ne 1$. Since $K_{6k} \times K_3$ has a (3; p, q)-decomposition, by Remark 1.1, the graph $K_m \times K_3$ has the desired decomposition with $p \ne 1$. For p = 1, the required decomposition can be obtained from a (3; 1, q)-decomposition of $K_5 \times K_3$ and (3; 0, q)-decomposition of the remaining graphs.

Case(2) $m \equiv 0 \text{ or } 1 \pmod{3}$ and $n \equiv 2 \pmod{3}$.

Since tensor product is commutative, $K_m \times K_n \cong K_n \times K_m$. By Case 1, $K_n \times K_m$ has a (3; p, q)-decomposition.

$5 \quad (3;p,q) ext{-decomposition of } K_m\otimes \overline{K_n}$

In this section we obtain the existence of (3; p, q)-decomposition of complete multipartite graph as follows:

Lemma 5.1. The graph $K_3 \otimes \overline{K_2}$ has a (3; p, q)-decomposition, for every admissible pair (p, q) of nonnegative integers with $3(p+q) = |E(K_3 \otimes \overline{K_2})|$.

Proof. Let $V(K_3 \otimes \overline{K_2}) = \{x_{i,j} : 1 \le i \le 3, 1 \le j \le 2\}$. Now, $K_3 \otimes \overline{K_2}$ has a (3; p, q)-decomposition as follows:

- 1. p = 0, q = 4. The required stars are ($x_{1,1}; x_{2,1}, x_{2,2}, x_{3,2}$), ($x_{1,2}; x_{2,1}, x_{2,2}, x_{3,1}$), ($x_{3,1}; x_{1,1}, x_{2,1}, x_{2,2}$), ($x_{3,2}; x_{1,2}, x_{2,1}, x_{2,2}$).
- 2. p = 1, q = 3. The required path and stars are $x_{3,1}x_{2,1}x_{3,2}x_{2,2}$ and $(x_{1,1}; x_{3,2}, x_{2,1}, x_{3,1})$, $(x_{1,2}; x_{3,1}, x_{2,1}, x_{3,2})$, $(x_{2,2}; x_{1,1}, x_{1,2}, x_{3,1})$ respectively.
- 3. p = 2, q = 2. The required paths and stars are $x_{3,1}x_{2,1}x_{3,2}x_{1,2}$, $x_{3,2}x_{2,2}x_{3,1}x_{1,1}$ and $(x_{1,1}; x_{2,1}, x_{2,2}, x_{3,2})$, $(x_{1,2}; x_{2,1}, x_{2,2}, x_{3,1})$ respectively.

- 4. p = 3, q = 1. The required paths and star are $x_{1,1}x_{3,1}x_{1,2}x_{2,1}$, $x_{1,2}x_{3,2}x_{1,1}x_{2,1}$, $x_{3,1}x_{2,1}x_{3,2}x_{2,2}$ and $(x_{2,2}; x_{1,1}, x_{1,2}, x_{3,1})$ respectively.
- 5. p = 4, q = 0. The required paths are $x_{1,1}x_{3,1}x_{1,2}x_{2,1}, x_{1,2}x_{3,2}x_{1,1}x_{2,1}, x_{2,1}x_{3,2}x_{2,2}x_{1,2}, x_{1,1}x_{2,2}x_{3,1}x_{2,1}$.

Lemma 5.2. The graph $K_3 \otimes \overline{K_3}$ has a (3; p, q)-decomposition, for every admissible pair (p, q) of nonnegative integers with $3(p+q) = |E(K_3 \otimes \overline{K_3})|$.

Proof. Let $V(K_3 \otimes \overline{K_3}) = \{x_{i,j} : 1 \le i, j \le 3\}$. Since $K_3 \otimes \overline{K_3} = 3K_{3,3}$, $K_3 \otimes \overline{K_3}$ has a (3; p, q)-decomposition with $p \ne 1$, by Theorem 1.1. For p = 1, the required path and stars are $x_2 + x_1 + x_2 + x_2 + x_3 + x_2 + x_3 +$

$$\begin{array}{l} x_{2,1}x_{1,2}x_{2,3}x_{3,2}, (x_{1,1}, x_{2,1}, x_{2,2}, x_{2,3}), (x_{1,1}, x_{3,1}, x_{3,2}, x_{3,3}), \\ (x_{1,2}; x_{3,1}, x_{3,2}, x_{2,2}), (x_{1,3}; x_{3,1}, x_{3,2}, x_{2,2}), (x_{2,1}; x_{3,1}, x_{3,2}, x_{1,3}), \\ (x_{2,2}; x_{3,1}, x_{3,2}, x_{3,3}), (x_{2,3}; x_{3,1}, x_{3,3}, x_{1,3}), (x_{3,3}; x_{1,2}, x_{1,3}, x_{2,1}). \end{array}$$

Lemma 5.3. The graph $K_3 \otimes \overline{K_4}$ has a (3; p, q)-decomposition, for every admissible pair (p, q) of nonnegative integers with $3(p+q) = |E(K_3 \otimes \overline{K_4})|$.

Proof. Since $K_3 \otimes \overline{K_4} = K_{4,4,4}$, let $V(K_{4,4,4}) = V_1 \cup V_2 \cup V_3$, where $V_i = V_i^1(= \{x_{i,1}, x_{i,2}\}) \cup V_i^2(= \{x_{i,3}, x_{i,4}\})$. We can view $K_{4,4,4}$ as $(K_3 \otimes \overline{K_2}) \oplus (K_3 \otimes \overline{K_2}) \oplus_{i \neq j \in \{1,2,3\}} K_{V_i^1,V_j^2}$. Now, $\bigoplus_{i \neq j \in \{1,2,3\}} K_{V_i^1,V_j^2}$ has a S_4 -decomposition as follows: $\{(x_{i,1}; x_{2,3}, x_{2,4}, x_{j,3}), (x_{i,2}; x_{2,3}, x_{2,4}, x_{j,4})\}$, $\{(x_{i,3}; x_{2,1}, x_{2,2}, x_{j,2}), (x_{i,4}; x_{2,1}, x_{2,2}, x_{j,1})\}$, i = 1, j = 3 and i = 3, j = 1. By Remark 1.2, we can use these pairs of stars to construct the required decomposition into an even number of paths and stars. For odd p and q, we decompose $K_3 \otimes \overline{K_2}$ into odd number of paths and stars using Lemma 5.1. Hence by Remark 1.1, the graph $K_3 \otimes \overline{K_4}$ has the desired decomposition. □

Lemma 5.4. Let G be an S_4 -decomposible graph and $p, q \ge 0$ be integers with $3(p+q) = |E(G \otimes \overline{K_n})|$ and $p \ne 1$. Then $G \otimes \overline{K_n}$ has a (3; p, q)-decomposition for all even n and every admissible pair (p, q).

Proof. Since G is S_4 -decomposible graph, for each star (a; u, v, w) in G, we have the following pairs of stars in $G \otimes K_n$; for each $j \in \{1, 3, \dots, n-1\}$, $\{(x_{a,j}; x_{u,i}, \boldsymbol{x_{v,i}}, \boldsymbol{x_{w,i}}), (x_{a,j+1}; x_{u,i}, x_{v,i}, \boldsymbol{x_{w,i}})\}$, where $1 \leq i \leq n$. Then by applying remark 1.2 to the pairs of stars mentioned above we obtained all possible even number of paths and stars of $G \otimes \overline{K_n}$. Now, consider

$$\{(x_{a,1}; x_{u,1}, x_{v,1}, x_{w,1}), (x_{a,1}; x_{u,2}, x_{v,2}, x_{w,2}), (x_{a,2}; x_{u,1}, x_{v,1}, x_{w,1})\}$$

and decompose it into $3P_4$ as given below. $\{x_{u,2}x_{a,1}x_{u,1}x_{a,2}, x_{v,2}x_{a,1}x_{v,1}x_{a,2}, x_{w,2}x_{a,1}x_{v,1}x_{a,2}, x_{w,2}x_{a,1}x_{w,1}x_{a,2}\}$. The remaining number of paths and stars can be obtained from the remaining pairs of stars given above except when p = 1. \Box

Theorem 5.5. Let p and q be nonnegative integers, and let n > 1. Then $K_m \otimes \overline{K_n}$ has a (3; p, q)-decomposition for every admissible pair (p, q) with $3(p+q) = E(K_m \otimes \overline{K_n})$ if and only if $mn^2(m-1) \equiv 0 \pmod{6}$ and $p \neq 1$ when (m, n) = (2, 3).

Proof. When (m, n) = (2, 3), the result follows from Theorem 1.1.

Necessity. Since $K_m \otimes \overline{K_n}$ is n(m-1)-regular with mn vertices, the necessity follows from Lemma 2.5.

Sufficiency. To construct the required decomposition, we consider the following two cases.

Case(1) $n \equiv 0 \pmod{3}$.

The graph $K_m \otimes \overline{K_n}$ can be viewed as edge-disjoint union of m(m-1)/2 copies of $K_{n,n}$. Since $n \equiv 0 \pmod{3}$, by Theorem 1.1, the graph $K_{n,n}$ has a (3; p, q)-decomposition except p = 1 when n = 3. Hence by Remark 1.1, the graph $K_m \otimes \overline{K_n}$ has the desired decomposition except when (n, p) = (3, 1).

Subcase 1(i) $m \equiv 0$ or $1 \pmod{3}$.

We can write $K_m \otimes \overline{K_3} = 3K_m \oplus (K_m \times K_3)$. Since $m \equiv 0$ or 1 (mod 3), by Theorem 1.2, the graph K_m has a (3; p, q)-decomposition, whenever $m \geq 6$. Also by Theorem 4.7, $K_m \times K_3$ has a (3; p, q)-decomposition. Hence by Remark 1.1, the graph $K_m \otimes \overline{K_3}$ has the desired decomposition whenever $m \geq 6$. Since $K_4 \otimes \overline{K_3} = (K_3 \otimes \overline{K_3}) \oplus (S_4 \otimes \overline{K_3})$, by Remark 1.4, $S_4 \otimes \overline{K_3}$ has an S_4 -decomposition and by Lemma 5.2, $K_3 \otimes \overline{K_3}$ has a (3; p, q)-decomposition and hence we have the required decomposition for m = 3, 4.

Subcase 1(ii) $m \equiv 2 \pmod{3}$.

Let m = 3k + 2, $k \ge 0$ be an integer, $K_m \otimes \overline{K_3} = (K_{3k} \otimes \overline{K_3}) \oplus (K_2 \otimes \overline{K_3}) \oplus (K_{3k,2} \otimes \overline{K_3})$. By Theorem 1.1 and Remark 1.4, $K_{3k,2} \otimes \overline{K_3}$ and $K_2 \otimes \overline{K_3} \cong (K_{3,3})$ have a S_4 -decomposition. By Subcase 1(i), we have that $K_{3k} \otimes \overline{K_3}$ has a required decomposition and hence by Remark 1.1, the graph $K_m \otimes \overline{K_n}$ has the desired decomposition.

Case(2) $m \equiv 0 \text{ or } 1 \pmod{3}$ and $n \equiv 1 \text{ or } 2 \pmod{3}$.

We can write $K_m \otimes \overline{K_n} = nK_m \oplus (K_m \times K_n)$. Since $m \equiv 0$ or 1 (mod 3), by Theorem 1.2, the graph K_m has a (3; p, q)-decomposition, where $m \geq 6$. Also by Theorem 4.7, $K_m \times K_n$ has a (3; p, q)-decomposition. Hence by Remark 1.1, the graph $K_m \otimes \overline{K_n}$ has the desired decomposition whenever $m \geq 6$. For m < 6 i.e. when m = 3, 4, to construct the required decomposition, we consider the following two subcases.

Subcase 2(i) m = 3.

When $n = 3k + 1 \ge 4$, we write $K_m \otimes \overline{K_n} = K_3 \otimes \overline{K_{3k+1}} = (K_3 \otimes \overline{K_4}) \oplus (K_3 \otimes \overline{K_{3(k-1)}}) \oplus 6K_{4,3(k-1)}$. By Lemma 5.3 and Case 1, $K_3 \otimes \overline{K_4}$ and $K_3 \otimes \overline{K_{3(k-1)}}$ have a (3; p, q)-decomposition. Also, by Theorem 1.1, $K_{4,3(k-1)}$ has a (3; p, q)-decomposition with $p \ne 1$ when k = 2. Hence by Remark 1.1, the graph $K_m \otimes \overline{K_n}$ has the desired decomposition with $p \ne 1$ when k = 2. For p = 1, the required decomposition can be obtained from a (3; 1, q)-decomposition of $K_3 \otimes \overline{K_4}$ and (3; 0, q)-decomposition of the remaining graphs.

When n = 3k + 2, $K_m \otimes \overline{K_n} = K_3 \otimes \overline{K_{3k+2}} = (K_3 \otimes \overline{K_2}) \oplus (K_3 \otimes \overline{K_{3k}}) \oplus 6K_{2,3k}$. By Lemma 5.1 and Case 1, $K_3 \otimes \overline{K_2}$ and $K_3 \otimes \overline{K_{3k}}$ have a (3; p, q)-decomposition. Also, by Theorem 1.1, $K_{2,3k}$ has a (3; p, q)-decomposition with $p \neq 1$. Hence by Remark 1.1, the graph $K_m \otimes \overline{K_n}$ has the desired decomposition with $p \neq 1$. For p = 1, the required decomposition can be obtained from a (3; 1, q)-decomposition of $K_3 \otimes \overline{K_2}$ and (3; 0, q)-decomposition of the remaining graphs.

Subcase 2(ii) m = 4.

When $n = 3k + 1 \ge 4$, we write $K_m \otimes \overline{K_n} = K_4 \otimes \overline{K_{3k+1}} = (K_4 \otimes \overline{K_4}) \oplus (K_4 \otimes \overline{K_{3(k-1)}}) \oplus 12K_{4,3(k-1)} = (K_3 \otimes \overline{K_4}) \oplus (S_4 \otimes \overline{K_4}) \oplus (K_4 \otimes \overline{K_{3(k-1)}}) \oplus 12K_{4,3(k-1)}$. By Lemmas 5.3 and 5.4 and Case 1, $K_3 \otimes \overline{K_4}$, $S_4 \otimes \overline{K_4}$ and $K_4 \otimes \overline{K_{3(k-1)}}$ have a (3; p, q)-decomposition. Also, by Theorem 1.1, $K_{4,3(k-1)}$ has a (3; p, q)-decomposition with $p \ne 1$ when k = 2. Hence by Remark 1.1, the graph $K_m \otimes \overline{K_n}$ has the desired decomposition (as in Subcase 2(i)).

When n = 3k + 2, we write $K_m \otimes \overline{K_n} = K_4 \otimes \overline{K_{3k+2}} = (K_3 \otimes \overline{K_2}) \oplus (S_4 \otimes \overline{K_2}) \oplus (K_4 \otimes \overline{K_{3k}}) \oplus 12K_{2,3k}$. By Lemmas 5.1 and 5.4 and Case 1, $K_3 \otimes \overline{K_2}$, $S_4 \otimes \overline{K_2}$ and $K_4 \otimes \overline{K_{3k}}$ have a (3; p, q)-decomposition. Also by Theorem 1.1, $K_{2,3k}$ has a (3; p, q)-decomposition with $p \neq 1$. Hence by Remark 1.1, the graph $K_m \otimes \overline{K_n}$ has the desired decomposition (as in Subcase 2(i)).

Acknowledgement

The authors thank the Department of Science and Technology, Government of India, New Delhi for its financial support through the Grant No. DST/SR/S4/MS:828/13. The second author thank the University Grant Commission for its support through the Grant No. F.510/7/DRS-I/2016(SAP-I). The authors would like to thank the referees for their valuable suggestions and comments, which improved the presentation of the paper.

References

- A.A. Abueida and M. Daven, Multidesigns for graph-pairs of order 4 and 5, Graphs Combin. 19 (2003), 433–447.
- [2] A.A. Abueida and M. Daven, Multidecompositions of the complete graph, Ars Combin. 72 (2004), 17–22.
- [3] A.A. Abueida and M. Daven, K.J. Roblee Multidesigns of the λ-fold complete graph-pairs of orders 4 and 5, Australas. J. Combin. 32 (2005), 125–136.
- [4] A.A. Abueida and T. O'Neil, Multidecomposition of λK_m into small cycles and claws. Bull. Inst. Comb. Appl. **49** (2007), 32–40.
- [5] J.A. Bondy and U.S.R Murty, Graph Theory with Applications, The Macmillan Press Ltd, New York (1976).
- [6] S. Jeevadoss and A. Muthusamy, Decomposition of product graphs into paths and cycles of length four, Graphs Combin. 32 (2016), 199–223.
- [7] H.M. Priyadharsini and A. Muthusamy, (G_m, H_m) -multidecomposition of $K_{m,m}(\lambda)$, Bull. Inst. Combin. Appl. **66** (2012), 42–48.
- [8] T.-W. Shyu, Decomposition of complete graphs into paths and stars, Discrete Math. 310 (2010), 2164–2169.
- T.-W. Shyu, Decomposition of complete bipartite graphs into paths and stars with same number of edges, *Discrete Math* **313** (2013), 865– 871.