BULETIN of The

Volume 87
Octoher 2019

NSTIINT: 0f

GOMBNMTORGS and its APPIBIHOXS

Editors-in-Chief: Marco Buratti, Donald Kreher, Tran van Trung

On loose 4-cycle decompositions of complete 3 -uniform hypergraphs

Ryan C. Bunge, Saad I. El-Zanati*, Lauren Haman, Cody Hatzer, Kristin Koe, and Kayla Spornberger

Illinois State University, Normal, Illinois U.S.A.
rcbunge@ilstu.edu, saad@ilstu.edu

Abstract

The complete 3-uniform hypergraph of order v has a set V of size v as its vertex set and the set of all 3-element subsets of V as its edge set. A loose 4 -cycle in such a hypergraph has vertex set $\left\{v_{1}, v_{2}, v_{3}\right.$, $\left.v_{4}, v_{5}, v_{6}, v_{7}, v_{8}\right\} \subseteq V$ and edge set $\left\{\left\{v_{1}, v_{2}, v_{3}\right\},\left\{v_{3}, v_{4}, v_{5}\right\},\left\{v_{5}, v_{6}, v_{7}\right\}\right.$, $\left.\left\{v_{7}, v_{8}, v_{1}\right\}\right\}$. We give necessary and sufficient conditions for the existence of a decomposition of the complete 3-uniform hypergraph of order v into isomorphic copies of a loose 4-cycle.

1 Introduction

A commonly studied problem in combinatorics concerns decompositions of graphs into edge-disjoint subgraphs. A decomposition of a graph K is a set $\Delta=\left\{G_{1}, G_{2}, \ldots, G_{s}\right\}$ of pairwise edge-disjoint subgraphs of K such that $E\left(G_{1}\right) \cup E\left(G_{2}\right) \cup \cdots \cup E\left(G_{s}\right)=E(K)$. If each element of Δ is isomorphic to a fixed graph G, then Δ is called a G-decomposition of K. A G-decomposition of K_{v} is also known as a G-design of order v. A K_{k}-design of order v is an $S(2, k, v)$-design or a Steiner system. An $S(2, k, v)$-design is also known as a balanced incomplete block design of index 1 or a $(v, k, 1)$-BIBD. The problem of determining all v for which there exists a G-design of order v is of special interest (see [1] for a survey).

[^0]The notion of decompositions of graphs naturally extends to decompositions of uniform hypergraphs. A hypergraph H consists of a finite nonempty set V of vertices and a set $E=\left\{e_{1}, e_{2}, \ldots, e_{m}\right\}$ of nonempty subsets of V called hyperedges. If for each $e \in E$ we have $|e|=t$, then H is said to be t-uniform. Thus graphs are 2 -uniform hypergraphs. The complete t uniform hypergraph on the vertex set V has the set of all t-element subsets of V as its edge set and is denoted by $K_{V}^{(t)}$. If $v=|V|$, then $K_{v}^{(t)}$ is called the complete t-uniform hypergraph of order v and is used to denote any hypergraph isomorphic to $K_{V}^{(t)}$. A decomposition of a hypergraph K is a set $\Delta=\left\{H_{1}, H_{2}, \ldots, H_{s}\right\}$ of pairwise edge-disjoint subgraphs of K such that $E\left(H_{1}\right) \cup E\left(H_{2}\right) \cup \cdots \cup E\left(H_{s}\right)=E(K)$. If each element H_{i} of Δ is isomorphic to a fixed hypergraph H, then H_{i} is called an H-block, and Δ is called an H-decomposition of K. If there exists an H-decomposition of K, then we may simply state that H decomposes K. An H-decomposition of the complete t-uniform hypergraph of order v is called an H-design of order v. The problem of determining all v for which there exists an H design of order v is called the spectrum problem for H-designs.

A $K_{k}^{(t)}$-design of order v is a generalization of Steiner systems and is equivalent to an $S(t, k, v)$-design. A summary of results on $S(t, k, v)$-designs appears in [7]. Keevash [13] has recently shown that for all t and k the obvious necessary conditions for the existence of an $S(t, k, v)$-design are sufficient for sufficiently large values of v. Similar results were obtained by Glock, Kühn, Lo, and Osthus [8, 9] and extended to include the corresponding asymptotic results for H-designs of order v for all uniform hypergraphs H. These results for t-uniform hypergraphs mirror the celebrated results of Wilson [19] for graphs. Although these asymptotic results assure the existence of H designs for sufficiently large values of v for any uniform hypergraph H, the spectrum problem has been settled for very few hypergraphs of uniformity larger than 2.

In the study of graph decompositions, a fair amount of the focus has been on G-decompositions of K_{v} where G is a graph with a relatively small number of edges (see [1] and [6] for known results). Some authors have investigated the corresponding problem for 3 -uniform hypergraphs. For example, in [4], the spectrum problem is settled for all 3-uniform hypergraphs on 4 or fewer vertices. In [16], Mathon and Street give necessary conditions for the existence of decompositions of $K_{v}^{(3)}$ into copies of the projective plane $P G(2,2)$ and into copies of the affine plane $A G(2,3)$. They give sufficient conditions for several infinite classes in both cases. More recently, the spectrum problem was settled in [5] for all 3-uniform hypergraphs with at most 6 vertices and at most 3 edges. In [5], they also settle the spectrum

Figure 1: The loose 4-cycle $L C_{4}$ denoted $H\left[v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}, v_{7}, v_{8}\right]$.
problem for the 3 -uniform hypergraph of order 6 whose edges form the lines of the Pasch configuration. Authors have also considered H-designs where H is a 3 -uniform hypergraph whose edge set is defined by the faces of a regular polyhedron. Let T, O, and I denote the tetrahedron, the octahedron, and the icosahedron hypergraphs, respectively. The hypergraph T is the same as $K_{4}^{(3)}$, and its spectrum was settled in 1960 by Hanani [10]. In another paper [11], Hanani settled the spectrum problem for O-designs and gave necessary conditions for the existence of I-designs. Perhaps the best known general result on decompositions of complete t-uniform hypergraphs is Baranyai's result [3] on the existence of 1-factorizations of $K_{m t}^{(t)}$ for all positive integers m. There are, however, several articles on decompositions of complete t-uniform hypergraphs (see [2] and [17]) and of t-uniform t partite hypergraphs (see [14] and [18]) into variations on the concept of a Hamilton cycle. There are also several results on decompositions of 3uniform hypergraphs into structures known as Berge cycles with a given number of edges (see for example [12] and [15]). We note however that the Berge cycles in these decompositions are not required to be isomorphic.

In this paper we are interested in the spectrum problem for H-designs where H is the hypergraph known as a loose 4 -cycle. A loose m-cycle in $K_{n}^{(3)}$, denoted $L C_{m}$, is a hypergraph with vertex set $\left\{v_{1}, v_{2}, \ldots, v_{2 m}\right\}$ and edge set $\left\{\left\{v_{2 i-1}, v_{2 i}, v_{2 i+1}\right\}: 1 \leq i \leq m-1\right\} \cup\left\{v_{2 m-1}, v_{2 m}, v_{1}\right\}$. The spectrum problem for a loose 3 -cycle was settled by Bryant, Herke, Maenhaut, and Wannasit in [5]. Let $H\left[v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}, v_{7}, v_{8}\right]$ denote the loose 4cycle with vertex set $\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}, v_{7}, v_{8}\right\}$ and edge set $\left\{\left\{v_{1}, v_{2}, v_{3}\right\}\right.$, $\left.\left\{v_{3}, v_{4}, v_{5}\right\},\left\{v_{5}, v_{6}, v_{7}\right\},\left\{v_{7}, v_{8}, v_{1}\right\}\right\}$. This hypergraph is shown in Figure 1.

1.1 Additional notation and terminology

If a and b are integers, we define $[a, b]$ to be $\{r \in \mathbb{Z}: a \leq r \leq b\}$. Let \mathbb{Z}_{n} denote the group of integers modulo n. We next define some notation for certain types of 3 -uniform hypergraphs.

Let U_{1}, U_{2}, U_{3} be pairwise disjoint sets. The hypergraph with vertex set $U_{1} \cup U_{2} \cup U_{3}$ and edge set consisting of all 3-element sets having exactly one vertex in each of U_{1}, U_{2}, U_{3} is denoted by $K_{U_{1}, U_{2}, U_{3}}^{(3)}$. The hypergraph with vertex set $U_{1} \cup U_{2}$ and edge set consisting of all 3-element sets having at most 2 vertices in each of U_{1}, U_{2} is denoted by $L_{U_{1}, U_{2}}^{(3)}$. If $\left|U_{i}\right|=u_{i}$ for $i \in\{1,2,3\}$, we may use $K_{u_{1}, u_{2}, u_{3}}^{(3)}$ to denote any hypergraph that is isomorphic to $K_{U_{1}, U_{2}, U_{3}}^{(3)}$ and $L_{u_{1}, u_{2}}^{(3)}$ to denote any hypergraph that is isomorphic to $L_{U_{1}, U_{2}}^{(3)}$.

If H^{\prime} is a subhypergraph of H, then $H \backslash H^{\prime}$ denotes the hypergraph obtained from H by deleting the edges of H^{\prime}. We may refer to $H \backslash H^{\prime}$ as the hypergraph H with a hole H^{\prime}. The vertices in H^{\prime} are called the vertices in the hole.

2 Some small examples

We give several examples of $L C_{4}$-decompositions that are used in proving our main result.
Example 2.1. Let $V\left(K_{8}^{(3)}\right)=\mathbb{Z}_{8}$ and let

$$
\begin{aligned}
B_{1}= & \{H[0,5,1,7,2,3,6,4]\} \\
B_{2}= & \{H[0,1,2,3,4,5,6,7], H[0,7,2,1,4,3,6,5], H[0,5,2,7,4,1,6,3], \\
& H[1,2,3,4,5,6,7,0], H[1,0,3,2,5,4,7,6], H[1,6,3,0,5,2,7,4]\} .
\end{aligned}
$$

Then an $L C_{4}$-decomposition of $K_{8}^{(3)}$ consists of the orbit of the H-block in B_{1} under the action of the map $j \mapsto j+1(\bmod 8)$ along with the H-blocks in B_{2}.
Example 2.2. Let $V\left(K_{9}^{(3)}\right)=\mathbb{Z}_{7} \cup\left\{\infty_{1}, \infty_{2}\right\}$ and let

$$
\begin{aligned}
& B=\left\{H\left[\infty_{1}, \infty_{2}, 0,5,2,4,3,6\right], H\left[2, \infty_{1}, 0,3, \infty_{2}, 6,1,4\right]\right. \\
& \left.H\left[4,3,0, \infty_{2}, 1, \infty_{1}, 2,5\right]\right\}
\end{aligned}
$$

Then an $L C_{4}$-decomposition of $K_{9}^{(3)}$ consists of the orbits of the H-blocks in B under the action of the map $\infty_{i} \mapsto \infty_{i}$, for $i \in\{1,2\}$, and $j \mapsto j+1$ $(\bmod 7)$.

Example 2.3. Let $V\left(K_{10}^{(3)}\right)=\mathbb{Z}_{10}$ and let

$$
B=\{H[0,8,1,3,2,9,5,7], H[4,0,2,8,6,3,7,9], H[0,1,3,4,8,2,9,5]\}
$$

Then an $L C_{4}$-decomposition of $K_{10}^{(3)}$ consists of the orbits of the H-blocks in B under the action of the map $j \mapsto j+1(\bmod 10)$.

Example 2.4. Let $V\left(K_{12}^{(3)}\right)=\mathbb{Z}_{11} \cup\{\infty\}$ and let

$$
\begin{aligned}
& B=\{H[9,1,0, \infty, 5,4,3,6], H[2,5,0, \infty, 3,7,1,4] \\
& H[0, \infty, 1,5,2,4,9,6], H[6,0,1, \infty, 8,4,9,2] \\
& \qquad H[8,1,0, \infty, 2,6,4,3]\} .
\end{aligned}
$$

Then an $L C_{4}$-decomposition of $K_{12}^{(3)}$ consists of the orbits of the H-blocks in B under the action of the map $\infty \mapsto \infty$ and $j \mapsto j+1(\bmod 11)$.

Example 2.5. Let $V\left(K_{14}^{(3)}\right)=\mathbb{Z}_{13} \cup\{\infty\}$ and let

$$
\begin{gathered}
B=\{H[4,12,8,11,1,0, \infty, 2], H[0,9,11,6,4,8, \infty, 3] \\
H[1,4,10,5,0,7, \infty, 6], H[0,1,2,3,8,4,9,10] \\
H[8,11,6,4,3,0,7,1], H[2,0,8,12,7,9,10,3] \\
H[1,5,4,11,2,0,10,8]\} .
\end{gathered}
$$

Then an $L C_{4}$-decomposition of $K_{14}^{(3)}$ consists of the orbits of the H-blocks in B under the action of the map $\infty \mapsto \infty$ and $j \mapsto j+1(\bmod 13)$.

Example 2.6. Let $V\left(L_{8,8}^{(3)}\right)=\mathbb{Z}_{16}$ with vertex partition $\{\{0,2,4,6,8,10$, $12,14\},\{1,3,5,7,9,11,13,15\}\}$ and let

$$
\begin{gathered}
B=\{H[0,5,1,2,8,14,15,11], H[0,2,5,9,6,8,13,7] \\
H[1,6,0,4,3,10,15,12], H[0,8,1,2,10,4,7,5] \\
H[0,14,1,10,3,11,6,5], H[7,0,3,8,13,4,1,14] \\
H[1,0,2,5,3,7,12,4]\} .
\end{gathered}
$$

Then an $L C_{4}$-decomposition of $L_{8,8}^{(3)}$ consists of the orbits of the H-blocks in B under the action of the $\operatorname{map} j \mapsto j+1(\bmod 16)$.

Example 2.7. Let $V\left(L_{8,8}^{(3)} \cup K_{1,8,8}^{(3)}\right)=\mathbb{Z}_{16} \cup\{\infty\}$ with vertex partition $\{\{\infty\},\{0,2,4,6,8,10,12,14\},\{1,3,5,7,9,11,13,15\}\}$ and let

$$
\begin{gathered}
B=\{H[7,0,1,11,2,3, \infty, 10], H[5,0,1,13,2,9, \infty, 10] \\
H[0,2,5,9,6,8,13,7], H[1,6,0,4,3,10,15,12] \\
H[0,8,1,2,10,4,7,5], H[0,14,1,10,3,11,6,5] \\
\\
H[7,0,3,8,13,4,1,14], H[1,0,2,5,3,7,12,4]\} .
\end{gathered}
$$

Then an $L C_{4}$-decomposition of $L_{8,8}^{(3)} \cup K_{1,8,8}^{(3)}$ consists of the orbits of the H-blocks in B under the action of the $\operatorname{map} \infty \mapsto \infty$ and $j \mapsto j+1(\bmod 16)$.

Example 2.8. Let $V\left(K_{2,8,8}^{(3)}\right)=\mathbb{Z}_{16} \cup\left\{\infty_{1}, \infty_{2}\right\}$ with vertex partition $\left\{\left\{\infty_{1}, \infty_{2}\right\},\{0,2,4,6,8,10,12,14\},\{1,3,5,7,9,11,13,15\}\right\}$ and let

$$
B=\left\{H\left[\infty_{1}, 1,0,3, \infty_{2}, 9,8,11\right], H\left[\infty_{1}, 5,0,7, \infty_{2}, 13,8,15\right]\right\}
$$

Then an $L C_{4}$-decomposition of $K_{2,8,8}^{(3)}$ consists of the orbits of the H-blocks in B under the action of the map $\infty_{i} \mapsto \infty_{i}$, for $i \in\{1,2\}$, and $j \mapsto j+1$ $(\bmod 16)$.
Example 2.9. Let $V\left(K_{12}^{(3)} \backslash K_{4}^{(3)}\right)=\mathbb{Z}_{8} \cup\left\{\infty_{1}, \infty_{2}, \infty_{3}, \infty_{4}\right\}$ with ∞_{1}, \ldots, ∞_{4} being the vertices in the hole and let

$$
\begin{aligned}
B_{1}=\{ & H\left[2,0,4, \infty_{3}, 5,6, \infty_{1}, \infty_{2}\right], H\left[0,2,5, \infty_{2}, 4, \infty_{4}, \infty_{1}, \infty_{3}\right] \\
& H\left[0,2, \infty_{3}, 3, \infty_{2}, 4, \infty_{4}, 1\right], H\left[2,0, \infty_{1}, 4,7, \infty_{4}, \infty_{3}, 5\right], \\
& \left.H\left[3,0, \infty_{2}, 5,7,4, \infty_{4}, 1\right]\right\}, \\
B_{2}=\{ & H\left[2,1,0, \infty_{1}, 4,5,6, \infty_{2}\right], H\left[3,2,1, \infty_{1}, 5,6,7, \infty_{2}\right], \\
& H\left[4,3,2, \infty_{1}, 6,7,0, \infty_{2}\right], H\left[5,4,3, \infty_{1}, 7,0,1, \infty_{2}\right], \\
& H\left[3,1,0, \infty_{3}, 4,5,7, \infty_{4}\right], H\left[4,2,1, \infty_{3}, 5,6,0, \infty_{4}\right] \\
& H\left[5,3,2, \infty_{3}, 6,7,1, \infty_{4}\right], H\left[6,4,3, \infty_{3}, 7,0,2, \infty_{4}\right] \\
& H[0,5,1,6,2,7,3,4], H[4,0,1,5,2,6,3,7], H[6,1,0,3,2,5,4,7] \\
& H[4,1,5,2,6,3,7,0], H[0,4,5,1,6,2,7,3], H[7,2,1,4,3,6,5,0]\} .
\end{aligned}
$$

Then an $L C_{4}$-decomposition of $K_{12}^{(3)} \backslash K_{4}^{(3)}$ consists of the orbits of the H blocks in B_{1} under the action of the map $\infty_{i} \mapsto \infty_{i}$, for $i \in[1,4]$, and $j \mapsto j+1(\bmod 8)$ along with the H-blocks in B_{2}.
Example 2.10. Let $V\left(K_{14}^{(3)} \backslash K_{6}^{(3)}\right)=\mathbb{Z}_{8} \cup\left\{\infty_{1}, \infty_{2}, \infty_{3}, \infty_{4}, \infty_{5}, \infty_{6}\right\}$ with $\infty_{1}, \ldots, \infty_{6}$ being the vertices in the hole and let

$$
\begin{aligned}
B_{1}=\{ & H\left[\infty_{1}, 0, \infty_{2}, 2, \infty_{3}, 4, \infty_{5}, 6\right], H\left[\infty_{6}, 7, \infty_{5}, 5, \infty_{4}, 3, \infty_{2}, 1\right], \\
& H\left[\infty_{1}, 0, \infty_{3}, 7, \infty_{6}, 6, \infty_{4}, 1\right], H\left[\infty_{6}, \infty_{1}, 0,2, \infty_{3}, \infty_{4}, 5,7\right]
\end{aligned}
$$

$$
\begin{aligned}
& H\left[0, \infty_{1}, 1, \infty_{2}, 4, \infty_{4}, 5, \infty_{5}\right], H\left[0, \infty_{2}, 1, \infty_{3}, 4, \infty_{5}, 5, \infty_{6}\right], \\
& H\left[0, \infty_{3}, 1, \infty_{1}, 4, \infty_{6}, 5, \infty_{4}\right], H\left[0, \infty_{1}, 2, \infty_{2}, 4, \infty_{4}, 6,3\right], \\
& \left.H\left[\infty_{5}, \infty_{2}, 0,4,1,3,5,7\right]\right\}, \\
B_{2}=\{ & H\left[2,1,0, \infty_{1}, 4,5,6, \infty_{2}\right], H\left[3,2,1, \infty_{1}, 5,6,7, \infty_{2}\right], \\
& H\left[4,3,2, \infty_{1}, 6,7,0, \infty_{2}\right], H\left[5,4,3, \infty_{1}, 7,0,1, \infty_{2}\right], \\
& H\left[3,1,0, \infty_{3}, 4,5,7, \infty_{4}\right], H\left[4,2,1, \infty_{3}, 5,6,0, \infty_{4}\right], \\
& H\left[5,3,2, \infty_{3}, 6,7,1, \infty_{4}\right], H\left[6,4,3, \infty_{3}, 7,0,2, \infty_{4}\right], \\
& H\left[3,2,0, \infty_{5}, 4,6,7, \infty_{6}\right], H\left[4,3,1, \infty_{5}, 5,7,0, \infty_{6}\right] \\
& H\left[5,4,2, \infty_{5}, 6,0,1, \infty_{6}\right], H\left[6,5,3, \infty_{5}, 7,1,2, \infty_{6}\right] \\
& H[0,5,1,6,2,7,3,4], H[4,1,5,2,6,3,7,0]\} .
\end{aligned}
$$

Then an $L C_{4}$-decomposition of $K_{14}^{(3)} \backslash K_{6}^{(3)}$ consists of the orbits of the H blocks in B_{1} under the action of the map $\infty_{i} \mapsto \infty_{i}$, for $i \in[1,6]$, and $j \mapsto j+1(\bmod 8)$ along with the H-blocks in B_{2}.

3 Main results

We begin by giving necessary conditions for the existence of an $L C_{4}$-decomposition of $K_{v}^{(3)}$. An obvious necessary condition is that 4 must divide the number of edges in $K_{v}^{(3)}$, and thus we must have $v \equiv 0,1,2,4$, or 6 (mod 8). Since $K_{1}^{(3)}$ and $K_{2}^{(3)}$ contain no edges, it is vacuously true that $L C_{4}$ decomposes $K_{1}^{(3)}$ and $K_{2}^{(3)}$. Also since $L C_{4}$ has order 8 , there is no $L C_{4}$-decomposition of $K_{4}^{(3)}$ or $K_{6}^{(3)}$. Thus we have the following.

Lemma 1. There exists an $L C_{4}$-decomposition of $K_{v}^{(3)}$ only if $v \equiv 0,1$, 2,4 , or $6(\bmod 8)$ and $v \notin\{4,6\}$.

We will show that the above conditions are sufficient by showing how to construct $L C_{4}$-decompositions of $K_{v}^{(3)}$ for all $v \equiv 0,1,2,4$, or $6(\bmod 8)$ with $v \geq 8$. Our constructions are dependent on the many small examples given in Section 2.

We begin by proving a lemma that is fundamental to our constructions.
Lemma 2. Let n, x, and r be nonnegative integers such that $n x+r \geq 3$. There exists a decomposition of $K_{n x+r}^{(3)}$ that is comprised of isomorphic copies of each of the following under the given conditions:

- $K_{r}^{(3)}$ if $x=0$,
- $K_{n+r}^{(3)}$ if $x \geq 1$,
- $K_{n+r}^{(3)} \backslash K_{r}^{(3)}$ if $x \geq 2$,
- $K_{r, n, n}^{(3)} \cup L_{n, n}^{(3)}$ if $x \geq 2$,
- $K_{n, n, n}^{(3)}$ if $x \geq 3$.

Proof. If $x \in\{0,1\}$, the decomposition is trivial. Similarly, if $n=0$, the result is trivial because $K_{r}^{(3)}=K_{n+r}^{(3)}=K_{n x+r}^{(3)}$ while $K_{n+r}^{(3)} \backslash K_{r}^{(3)}$, $K_{r, n, n}^{(3)} \cup L_{n, n}^{(3)}$, and $K_{n, n, n}^{(3)}$ are all empty (i.e., contain no edges). For the remainder of the proof, we assume that $x \geq 2$ and $n \geq 1$.

Let $V_{0}, V_{1}, \ldots, V_{x}$ be pairwise disjoint sets of vertices with $\left|V_{0}\right|=r$ and $\left|V_{1}\right|=\left|V_{2}\right|=\cdots=\left|V_{x}\right|=n$. Then, the result follows from the fact that the complete 3-uniform hypergraph on the vertex set $V_{0} \cup V_{1} \cup \cdots \cup V_{x}$, which is $n x+r$ vertices, can be viewed as the (edge-disjoint) union

$$
\begin{array}{r}
K_{V_{1} \cup V_{0}}^{(3)} \cup \bigcup_{2 \leq i \leq x}\left(K_{V_{i} \cup V_{0}}^{(3)} \backslash K_{V_{0}}^{(3)}\right) \cup \bigcup_{1 \leq i<j \leq x}\left(K_{V_{0}, V_{i}, V_{j}}^{(3)} \cup L_{V_{i}, V_{j}}^{(3)}\right) \\
\cup \bigcup_{1 \leq i<j<k \leq x}\left(K_{V_{i}, V_{j}, V_{k}}^{(3)}\right) .
\end{array}
$$

We now give our main result.
Theorem 3. There exists an $L C_{4}$-decomposition of $K_{v}^{(3)}$ if and only if $v \equiv 0,1,2,4$, or $6(\bmod 8)$ and $v \notin\{4,6\}$.

Proof. The necessary conditions for the existence of an $L C_{4}$-decomposition of $K_{v}^{(3)}$ are established in Lemma 1. Thus we need only to establish their sufficiency. Let $v=8 x+r$ where $x \geq 1$ and $r \in\{0,1,2,4,6\}$. By Lemma 2 it suffices to find $L C_{4}$-decompositions of $K_{8+r}^{(3)}, K_{8+r}^{(3)} \backslash K_{r}^{(3)}, K_{r, 8,8}^{(3)} \cup L_{8,8}^{(3)}$, and $K_{8,8,8}^{(3)}$. We note that if $r \in\{0,1,2\}$ then $K_{8+r}^{(3)} \backslash K_{r}^{(3)}$ is isomorphic to $K_{8+r}^{(3)}$. Also, $K_{0,8,8}^{(3)}$ is empty, and $K_{2,8,8}^{(3)}$ decomposes $K_{4,8,8}^{(3)}, K_{6,8,8}^{(3)}$, and $K_{8,8,8}^{(3)}$. Thus, it suffices to find $L C_{4}$-decompositions of $K_{8}^{(3)}, K_{9}^{(3)}, K_{10}^{(3)}$, $K_{12}^{(3)}, K_{14}^{(3)}, K_{12}^{(3)} \backslash K_{4}^{(3)}, K_{14}^{(3)} \backslash K_{6}^{(3)}, K_{1,8,8}^{(3)} \cup L_{8,8}^{(3)}, K_{2,8,8}^{(3)}$, and $L_{8,8}^{(3)}$, which are each shown to exist in Examples 2.1-2.10.

References

[1] P. Adams, D. Bryant, and M. Buchanan, A survey on the existence of G-designs, J. Combin. Des. 16 (2008), 373-410.
[2] R.F. Bailey and B. Stevens, Hamilton decompositions of complete k uniform hypergraphs, Discrete Math. 310 (2010), 3088-3095.
[3] Zs. Baranyai, On the factorization of the complete uniform hypergraph, in: Infinite and finite sets, Colloq. Math. Soc. János Bolyai 10, NorthHolland, Amsterdam, 1975, 91-108.
[4] J.-C. Bermond, A. Germa, and D. Sotteau, Hypergraph-designs, Ars Combin. 3 (1977), 47-66.
[5] D. Bryant, S. Herke, B. Maenhaut, and W. Wannasit, Decompositions of complete 3 -uniform hypergraphs into small 3 -uniform hypergraphs, Australas. J. Combin. 60 (2014), 227-254.
[6] D.E. Bryant and T.A. McCourt, Existence results for G-designs, http://wiki.smp.uq.edu.au/G-designs/
[7] C. J. Colbourn and R. Mathon, Steiner systems, in The CRC Handbook of Combinatorial Designs, 2nd edition, (Eds. C. J. Colbourn and J. H. Dinitz), CRC Press, Boca Raton (2007), 102-110.
[8] S. Glock, D. Kühn, A. Lo, and D. Osthus, The existence of designs via iterative absorption, arXiv:1611.06827v2, (2017), 63 pages.
[9] S. Glock, D. Kühn, A. Lo, and D. Osthus, Hypergraph F-designs for arbitrary F, arXiv:1706.01800, (2017), 72 pages.
[10] H. Hanani, On quadruple systems, Canad. J. Math., 12 (1960), 145157.
[11] H. Hanani, Decomposition of hypergraphs into octahedra, Second International Conference on Combinatorial Mathematics (New York, 1978), pp. 260-264, Ann. New York Acad. Sci., 319, New York Acad. Sci., New York, 1979.
[12] H. Jordon and G. Newkirk, 4-cycle decompositions of complete 3uniform hypergraphs, Australas. J. Combin. 71 (2018), 312-323.
[13] P. Keevash, The existence of designs, arXiv:1401.3665v2, (2018), 39 pages.
[14] J. Kuhl and M. W. Schroeder, Hamilton cycle decompositions of k uniform k-partite hypergraphs, Australas. J. Combin. 56 (2013), 2337.
[15] D. Kühn and D. Osthus, Decompositions of complete uniform hypergraphs into Hamilton Berge cycles, J. Combin. Theory Ser. A 126 (2014), 128-135.
[16] R. Mathon and A. P. Street, Partitioning sets of triples into two small planes, Designs Codes Cryptogr. 27 (2002), 119-130.
[17] M. Meszka and A. Rosa, Decomposing complete 3-uniform hypergraphs into Hamiltonian cycles, Australas. J. Combin. 45 (2009), 291302.
[18] M. W. Schroeder, On Hamilton cycle decompositions of r-uniform r partite hypergraphs, Discrete Math. 315 (2014), 1-8.
[19] R. M. Wilson, Decompositions of Complete Graphs into Subgraphs Isomorphic to a Given Graph, in "Proc. Fifth British Combinatorial Conference" (C.St. J. A. Nash-Williams and J. Sheehan, Eds.), pp. 647-659, Congr. Numer. XV, 1975.

[^0]: * Corresponding author.

 AMS (MOS) Subject Classifications: 05C65, 05C51, 05C38
 Key words and phrases: Hypergraph decomposition, loose cycle, spectrum problem

