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Abstract: For an edge coloring c of a connected graph G with positive
integers where adjacent edges may be colored the same, the chromatic mean
of a vertex v of G is the average of the colors of the edges incident with v.
Only those edge colorings c for which the chromatic mean of every vertex is
a positive integer are considered. If distinct vertices have distinct chromatic
means, then c is a rainbow mean coloring of G. The maximum vertex color
in a rainbow mean coloring c of G is the rainbow mean index of c, while the
rainbow mean index of G is the minimum rainbow mean index among all
rainbow mean colorings of G. The rainbow mean index of several bipartite
graphs are determined, namely prisms, hypercubes, and complete bipartite
graphs.

1 Introduction

It is graph theory folklore that in every nontrivial graph, there are always
two vertices having the same degree. Indeed, this fact is listed (indirectly)
among the 24 theorems in an article by David Wells [7], asking which of
24 theorems is the most beautiful. A graph G was initially called perfect
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and later called irregular if the degrees of all vertices of G are distinct.
Consequently, no nontrivial graph is perfect, that is, irregular.

Over the years, “irregular graphs” have been looked at in a variety of ways
(see [1, 2, 3, 6], for example). While no nontrivial graph is irregular, there
are irregular multigraphs of each order n ≥ 3. A multigraph M can be
looked at as a labeled graph GM where each edge uv of GM is labeled with
the positive integer equal to the number of parallel edges joining u and v
in M . The degree of v in M is then the sum of the labels of the edges
in GM that are incident with v. Later each edge label was considered as
an edge color and the sum of the labels incident with a vertex was referred
to as its chromatic sum which became the color of the vertex.

In 1986, at the 250th Anniversary of Graph Theory Conference held at Indi-
ana University-Purdue University Fort Wayne (now called Purdue Univer-
sity Fort Wayne), the concept of “irregularity strength” was introduced by
Gary Chartrand, defined as the smallest positive integer k for which a not
necessarily proper edge coloring of a graph from the set [k] = {1, 2, . . . , k}
exists giving rise to vertex colors (chromatic sums), all of which are dis-
tinct (see [5]). Consequently, the problem was to determine the smallest
positive integer k such that each edge of a graph can be colored with an
element of [k] in such a way that the vertex colors are distinct. This then
results in a vertex coloring of the graph, often called a rainbow coloring
since all vertex colors are distinct. In many instances, such an edge color-
ing caused the largest vertex color to be significantly larger than the order
of the graph. From this observation, the question occurred as to whether
some edge coloring could be defined on a graph producing a vertex color-
ing in some natural way such that all vertex colors are integers, distinct
vertices have distinct colors, and the largest vertex color is not as large as
that produced when dealing with the irregularity strength.

While minimizing the positive integer k so that each edge color is an element
of [k] and requiring distinct vertices to have distinct vertex colors (chromatic
sums) became a topic of study in many papers, a related topic is that of
requiring distinct vertices to have distinct vertex colors, when the vertex
color is defined as the integer chromatic average, and minimizing the largest
vertex color. Here the emphasis is on the resulting vertex colors rather
than the edge colors. Thus, such an edge coloring not only requires the
average color of the edges incident with each vertex to be an integer and all
resulting vertex colors to be distinct but that of minimizing the maximum
vertex color. This concept was introduced and studied in [4].
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Each connected graph G having an edge coloring c with positive integers,
where adjacent edges may be colored the same, induces a vertex coloring cm

defined as the positive integer cm(v) =
∑

e∈Ev
c(e)

deg v , where Ev is the set of
edges incident with a vertex v of G. Such edge colorings are called mean
colorings. The vertex color cm(v) of v is called the chromatic mean of v.
Consequently, only edge colorings c are considered for which cm(v) is a
positive integer for every vertex v of G. If distinct vertices have distinct
chromatic means, then the edge coloring c is called a rainbow mean coloring
of G. The maximum vertex color in a rainbow mean coloring c is called the
rainbow mean index rm(c) of c, while the minimum mean index among all
rainbow mean colorings of G is the rainbow mean index rm(G) of G. For
example, rainbow mean colorings of the trees F and H of order 6 are shown
in Figure 1. The rainbow mean index of the edge coloring of F is 6, while
the rainbow mean index of the edge coloring of H is 7. In fact, rm(F ) = 6
and rm(H) = 7.
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Figure 1: Rainbow mean colorings of two graphs

There are several observations made in [4] that will be useful to us here.

Observation 1.1. Every connected graph G of order n ≥ 3 has a rainbow
mean coloring and rm(G) ≥ n.

Let c be a rainbow mean coloring of a connected graph G. For a vertex v
of G, the chromatic sum cs(v) of v is defined as the sum of the colors of the
edges incident with v. Hence, cs(v) =

∑
e∈Ev

c(e) = deg v · cm(v).

Observation 1.2. If c is a rainbow mean coloring of a connected graph G,
then ∑

v∈V (G)

cs(v) = 2
∑

e∈E(G)

c(e).

Furthermore, if the order of G is n and rm(c) = n, then

∑

v∈V (G)

cm(v) =

(
n + 1

2

)
.
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A connected graph of order 3 or more with a rainbow mean coloring is
referred to as a mean-colored graph. A vertex v in a mean-colored graph G
is chromatically odd if cs(v) = deg v · cm(v) is an odd integer; otherwise,
v is chromatically even. The following is an immediate consequence of
Observation 1.2.

Corollary 1.3. Every mean-colored graph contains an even number of
chromatically odd vertices.

Corollary 1.4. If G is a connected graph of order n ≥ 6 with n ≡ 2
(mod 4) all of whose vertices are odd, then rm(G) ≥ n + 1.

Proof. Assume, to the contrary, that rm(G) = n. Consequently, there
exists a rainbow mean coloring c : E(G) → N of G such that {cm(v) :
v ∈ V (G)} = [n] = {1, 2, . . . , n}. Since n ≡ 2 (mod 4), it follows that
n = 4k + 2 for some positive integer k. Thus, the set [n] contains 2k + 1
odd integers, namely 1, 3, . . . , 4k + 1. Suppose that u1, u2, . . . , u2k+1 are
the vertices of G such that cm(ui) = 2i − 1 for i = 1, 2, . . . , 2k + 1. Since
every vertex of G has odd degree, the vertices u1, u2, . . . , u2k+1 are the only
chromatically odd vertices. This contradicts Corollary 1.3.

Our primary interest here will be dealing with connected bipartite graphs G
of order 3 or more having partite sets U and W . Because each of

∑
u∈U cs(u)

and
∑

w∈W cs(w) counts the sum of the colors of the edges of G, we have
the following fact.

Observation 1.5. Let G be a connected bipartite graph with partite sets U
and W . If c is an edge coloring of G, then

∑
u∈U cs(u) =

∑
w∈W cs(w).

Among the results obtained in [4], the rainbow mean index was determined
for each complete graph and cycle.

Theorem 1.6. For an integer n ≥ 3,

rm(Kn) =

{
n if n ≥ 4 and n ≡ 0, 1, 3 (mod 4)

n + 1 if n = 3 or n ≡ 2 (mod 4)

rm(Cn) =

{
n if n ≡ 0, 1 (mod 4)

n + 1 if n ≡ 2, 3 (mod 4).

A connected graph G of order n ≥ 3 with rm(G) = n is called Type 1. If
rm(G) = n+ 1, then G is Type 2; while if rm(G) = n+ 2, then G is Type 3.
With this terminology, a conjecture made in [4] can be rephrased as follows.
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Conjecture 1.7. Every connected graph of order 3 or more is Type 1, 2
or 3.

In this paper, we verify Conjecture 1.7 for bipartite graphs belonging to
some well known classes.

2 Prisms and hypercubes

In this section, we will be interested in determining the rainbow mean in-
dexes of graphs belonging to one of two classes, each expressed as Cartesian
products of graphs. For this purpose, the following result will be useful to
us.

Theorem 2.1. Let G be a connected regular graph of order n ≥ 4 with
rm(G) = n containing a 1-factor and let H be a connected graph of order p.
Then rm(G � H) = np.

Proof. Let G be r-regular for some integer r ≥ 2 and let F be a 1-factor
of G. Furthermore, let V (G) = {v1, v2, . . . , vn} and V (H) = {w1, . . . , wp}.
In the construction of G � H, each vertex vi (1 ≤ i ≤ n) of G is replaced
by a copy of Hi of H, where V (Hi) = {ui,1, ui,2, . . . , ui,p} in G � H.
If vivj ∈ E(G), then ui,kuj,k ∈ E(G � H) for k = 1, 2, . . . , p. The 1-
factor F in G gives rise to p 1-factors F1, F2, . . . , Fp in G � H such that if
vivj ∈ E(F ), then ui,kuj,k ∈ E(Fk) for k = 1, 2, . . . , p.

Since rm(G) = n, there is a rainbow mean coloring cG : E(G) → N with
rm(cG) = n and so {cmcG(vi) : 1 ≤ i ≤ n} = [n]. Consequently, we may
assume that cmcG(vi) = i for i ∈ [n]. Since the order of G � H is np,
it follows by Observation 1.1 that rm(G � H) ≥ np. Hence, it suffices to
show that there is a rainbow mean coloring c : E(G � H) → N of G � H
with rm(c) = np. We next define an edge coloring c of G � H such that
the resulting rainbow mean vertex coloring cm gives

cm(ui,j) = cm
cG

(vi) + n(j − 1)

for each pair i, j of integers with 1 ≤ i ≤ n and 1 ≤ j ≤ p, that is,
{cm(u1,j), cm(u2,j), . . . , cm(un,j)} = [n(j − 1) + 1, nj] for 1 ≤ j ≤ p.
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Let the edge coloring c : E(G � H)→ N of G � H be defined as follows:

c(e) =





cmcG(vi) if e ∈ E(Hi), 1 ≤ i ≤ n

cG(vsvt) if e = us,jut,j , 1 ≤ s 6= t ≤ n, 1 ≤ j ≤ p

and e /∈ E(F1) ∪ E(F2) ∪ · · · ∪ E(Fp)

cG(vsvt)
+n(j − 1)(r + degH wj) if e = us,jut,j ∈ E(Fj), 1 ≤ j ≤ p.

Consequently, if an edge e of G � H belongs to the copy Hi (1 ≤ i ≤ n)
of H, then the color c(e) is defined as the chromatic mean cmcG(vi) of
the vertex vi of G produced from the rainbow mean coloring cG of G.
If e ∈ E(G � H) such that e = us,jut,j and e belongs to neither a graph Hi

for 1 ≤ i ≤ n nor a 1-factor Fj for 1 ≤ j ≤ p, then c(e) is the color cG(vsvt)
assigned to the edge vsvt ∈ E(G) by the rainbow mean coloring cG of G.
If e ∈ E(G � H) belongs to a 1-factor Fj (1 ≤ j ≤ p), where say e =
us,jut,j ∈ E(Fj), then we add to the color cG(vsvt) of the edge vsvt ∈ E(G)
the number n(j − 1)(r + degH wj). Therefore, the sum of the colors of the
edges incident with a vertex ui,j (1 ≤ i ≤ n and 1 ≤ j ≤ p) of G � H is

cm(ui,j) = (degH wj)cmcG(vi) + rcmcG(vi) + n(j − 1)(r + degH wj)

= (r + degH wj) [cmcG(vi) + n(j − 1)] .

Since degG � H ui,j = r + degH wj , it follows that

cm(ui,j) = cm
cG

(vi) + n(j − 1),

giving the desired result.

Theorem 2.1 therefore states that if G is Type 1 regular graph containing a
1-factor, then for every connected graph H, the graph G � H is Type 1 as
well. The prism Cn � K2, n ≥ 3, is the Cartesian product of the n-cycle Cn

and K2. Of course, Cn � K2 is bipartite if and only if n is even. We now
determine the rainbow mean index of every prism.

Theorem 2.2. For each integer n ≥ 3,

rm(Cn � K2) =

{
2n if n is even
2n + 1 if n is odd.

Proof. If n ≥ 4 is even, the n-cycle Cn is 2-regular and has a 1-factor.
Therefore, rm(Cn � K2) = 2n by Theorem 2.1. Hence, we may assume
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that n ≥ 3 and n is odd. Let G = Cn � K2 be constructed from the
two n-cycles (u1, u2, . . ., un, un+1 = u1) and (v1, v2, . . . , vn, vn+1 = v1)
and the edges uivi for 1 ≤ i ≤ n. Thus, G is a cubic graph of order 2n.
By Corollary 1.4, rm(G) ≥ 2n + 1. Thus, it remains to show that there
is a rainbow mean coloring c of G with rm(c) = 2n + 1. Define the edge
coloring c : E(G)→ N by

c(e) =





1 if e = uiui+1 where i is odd and 1 ≤ i ≤ n

4 if e = uiui+1 where i is even and 2 ≤ i ≤ n− 1

3i− 2 if e = uivi for 1 ≤ i ≤ n
3n+5

2 if e = vivi+1 where 1 ≤ i ≤ n.

Since cm(u1) = 1, cm(ui) = i + 1 for 2 ≤ i ≤ n, and cm(vi) = n + 1 + i
for 1 ≤ i ≤ n, it follows that c is a rainbow mean coloring of G with
rm(c) = 2n + 1.

Another well-known class of bipartite graphs defined by means of Cartesian
products is that of the hypercubes. The hypercube Qn is K2 if n = 1, while
for n ≥ 2, Qn is defined recursively as the Cartesian product Qn−1 � K2 of
Qn−1 and K2. For each integer n ≥ 2, the hypercubes Qn is an n-regular
bipartite graph of order 2n.

Theorem 2.3. For each integer n ≥ 2, rm(Qn) = 2n.

Proof. We proceed by induction on n ≥ 2. Since rm(Q2) = rm(C4) = 4 by
Theorem 1.6, it follows that the statement is true for n = 2. Assume that
rm(Qn) = 2n for an integer n ≥ 2. Since Qn+1 = Qn � K2, Qn is n-regular,
and has a 1-factor, it follows by Theorem 1.6 that rm(Qn+1) = 2·2n = 2n+1.
The desired result follows by induction.

3 Complete bipartite graphs

In this section, we turn our attention to another familiar class of bipartite
graphs, namely the complete bipartite graphs Ks,t where s + t ≥ 3. The
rainbow mean index of all stars K1,t, t ≥ 2, was determined in [4], showing
that every star of order 3 or more is either Type 1 or Type 3.

Theorem 3.1. For an integer t ≥ 2, rm(K1,t) =

{
t + 1 if t is even
t + 3 if t is odd.
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First, we show that if s and t are both odd with s, t ≥ 3, then Ks,t is not
Type 1.

Proposition 3.2. If s and t are odd integers with s, t ≥ 3, then

rm(Ks,t) ≥ s + t + 1.

Proof. Let G = Ks,t where s and t are odd integers with s, t ≥ 3. Therefore,
s = 2a + 1 and t = 2b + 1 for some positive integers a and b. If s ≡ t
(mod 4), then the statement follows by Corollary 1.4. Nevertheless, we
verify the statement without any additional assumption. Assume, to the
contrary, that there is a rainbow mean coloring c : E(G) → N of G with
rm(c) = s + t. Thus,

∑

v∈V (G)

cm(v) =

(
s + t + 1

2

)
=

(s + t + 1)(s + t)

2
= (2a+ 2b+ 3)(a+ b+ 1).

Let {X,Y } be a partition of the set [s + t] where |X| = t and |Y | = s such
that the sum of the elements in X is x and the sum of the elements in Y
is y. Since x + y = (2a + 2b + 3)(a + b + 1) and sx = ty, it follows that
sx = t[(2a+ 2b+ 3)(a+ b+ 1)−x] from which we have 2x = t(2a+ 2b+ 3).
Since t(2a+2b+3) is an odd integer, this is a contradiction and so rm(G) ≥
s + t + 1.

We now determine the rainbow mean indexes of all complete bipartite
graphs.

Theorem 3.3. If s and t are positive integers with min{s, t} ≥ 2, then

rm(Ks,t) =

{
s + t if st is even

s + t + 1 if st is odd

Proof. Let G = Ks,t with partite sets U = {u1, u2, . . . , us} and W =
{w1, w2, . . . , wt}. We consider two cases, according to whether st is even
or odd.

Case 1. st is even. By Observation 1.1, it suffices to show that there is a
rainbow mean coloring of Ks,t with rainbow mean index s+ t. We proceed
with the following three steps:

(1) Partition the set [s+ t] into the two subsets X = {x1, x2, . . . , xt} and
Y = {y1, y2, . . . , ys} where x1 < x2 < · · · < xt and y1 < y2 < · · · < ys
such that s

∑t
i=1 xi = t

∑s
j=1 yj .
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(2) Construct a t × s matrix M = [aij ] such that sxi is the sum of the
entries in row i for 1 ≤ i ≤ t and tyj is the sum of the entries in
column j for 1 ≤ j ≤ s.

(3) Use the matrix M = [aij ] to construct a rainbow mean coloring c
of Ks,t. For each vertex uj of Ks,t where 1 ≤ j ≤ s, we define
a t-vector ~uj = (a1j , a2j , . . . , atj) to be column j in M . This in
turn gives rise to the corresponding s-vectors ~wi = (ai1, ai2, . . . , ais)
to be row i in M for each vertex wi where 1 ≤ i ≤ t. The edge
coloring c : E(Ks,t)→ N is defined by c(wiuj) = aij for each pair i, j
of integers with 1 ≤ i ≤ t and 1 ≤ j ≤ s. Since the chromatic means
of the vertices of Ks,t are given by cm(uj) = xj for 1 ≤ j ≤ s and
cm(wi) = yi for 1 ≤ i ≤ t, it follows that {cm(v) : v ∈ V (Ks,t)} =
[s + t] and so rm(c) = s + t.

There are two subcases, depending on whether s and t are both even or
exactly one of s and t is even.

Subcase 1.1. Both s and t are even. We may assume that s ≤ t. Since s
and t are positive even integers, it follows that s = 2a and t = 2b for some
integers a and b with 1 ≤ a ≤ b. First, we partition the (2a + 2b)-element
set [2a + 2b] into the two subsets

X = [b] ∪ [b + 2a + 1, 2a + 2b]

and

Y = [b + 1, b + 2a],

where then |X| = 2b and |Y | = 2a. Let X = {x1, x2, . . . , x2b} where
x1 < x2 < · · · < x2b and Y = {y1, y2, . . . , y2a} where y1 < y2 < · · · < y2a.
Since

x =

2b∑

i=1

xi = 2b2 + 2ab + bs

and

y =

2a∑

i=1

yi = 2a2 + 2ab + a,

it follows that 2ax = 2by = 4a2b + 4ab2 + 2ab.
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Next, we define a (2b)× (2a) matrix M = [ai,j ] such that

• 2axi is the sum of the entries in row i for 1 ≤ i ≤ 2b and

• 2byj is the sum of the entries in column j for 1 ≤ j ≤ 2a.

For the first b rows in M , we define each entry in row i to be i where
1 ≤ i ≤ b. That is,

M =




1 1 1 · · · · · · · · · 1
2 2 2 · · · · · · · · · 2
...

...
...

...
...

...
...

b b b · · · · · · · · · b
...

...
...

...
...

...
...



. (1)

Thus, the sum of the entries in row i is 2axi = 2ai for 1 ≤ i ≤ b. Next,
we determine the remaining entries in the last b − 1 rows of M . Since
we want the sum of the entries in column 1 to be 2by1 = 2b(b + 1) and∑b

i=1 ai1 = b(b+1)
2 , it follows that

2b∑

i=b+1

ai1 = 2b(b + 1)− b(b + 1)

2
=

b(3b + 3)

2
.

We now choose each of the remaining b entries ab+1,1, ab+2,1, . . . , a2b,1 in
column 1 as either

⌊
b(3b + 3)

2b

⌋
=

⌊
3b + 3

2

⌋
or

⌈
b(3b + 3)

2b

⌉
=

⌈
3b + 3

2

⌉

so that the sequence ab+1,1, ab+2,1, . . . , a2b,1 is nondecreasing and the col-
umn sum is 2by1 = 2b(b + 1). Furthermore, since we want the sum of the
entrees in row b + 1 to be 2axb+1 = 2a(b + 2a + 1), we choose each of the
entries ab+1,2, ab+1,3, . . . , ab+1,2a as

⌊
2a(b + 2a + 1)− ab+1,1

2a− 1

⌋
or

⌈
2a(b + 2a + 1)− ab+1,1

2a− 1

⌉

so that the sequence ab+1,2, ab+1,3, . . . , ab+1,2a is nondecreasing and the row
sum is 2axb+1 = 2a(b+2a+1). We now proceed in this manner to determine
the remaining entries in M .

Finally, we define the edge coloring c : E(G) → N by c(wiuj) = aij for
every pair i, j of integers where 1 ≤ j ≤ 2a and 1 ≤ i ≤ 2b. By the defining
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property of the matrix M , it follows that cm(uj) = xj for 1 ≤ j ≤ 2a and
cm(wi) = yi for 1 ≤ i ≤ 2b. Thus, {cm(v) : v ∈ V (G)} = X ∪Y = [2a+ 2b]
and so rm(c) = 2a + 2b = s + t. As an illustration, we construct a rainbow
mean coloring c of K4,6 with rm(c) = 10. In this case, a = 2 and b = 3. We
partition the set [10] into the two sets X = [3] ∪ [8, 10] = {1, 2, 3, 8, 9, 10}
and Y = {4, 5, 6, 7}. Thus, x = 33 and y = 22 and so 4x = 6y = 132. Using
the technique described above, we obtain the 6× 4 matrix

M =




1 1 1 1
2 2 2 2
3 3 3 3
6 8 9 9
6 8 11 11
6 8 10 16



.

The resulting rainbow mean coloring c of K4,6 with rm(c) = 10 is shown in
Figure 2, where the four vertices u1, u2, u3, u4 of the partite set U of K4,6

are drawn in bold.
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Figure 2: Constructing a rainbow mean coloring of K4,6

Subcase 1.2. Exactly one of s and t is even. We may assume that s ≥ 2
is even and t ≥ 3 is odd (since the argument for the case when s ≥ 3 is
odd and t ≥ 2 is even is similar). Thus s = 2a and t = 2b + 1 for some
positive integers a and b. First, we partition the (2a + 2b + 1)-element set
[2a + 2b + 1] into the two subsets

X = [b] ∪ {a + b + 1} ∪ [2a + b + 2, 2a + 2b + 1]

Y = [b + 1, b + a] ∪ [a + b + 2, 2a + b + 1],

where then |X| = 2b + 1 and |Y | = 2a. Let X = {x1, x2, . . . , x2b+1} where
x1 < x2 < · · · < x2b+1 and Y = {y1, y2, . . . , y2a} where y1 < y2 < · · · < y2a.
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Since

x =

2b+1∑

i=1

xi = 2b2 + 2ab + 3b + a + 1

and

y =

2a∑

i=1

yi = 2a2 + 2ab + 2a,

it follows that 2ax = (2b + 1)y = 4a2b + 4ab2 + 6ab + 2a2 + 2a.

Next, we define a (2b + 1)× (2a) matrix M = [ai,j ] such that

• 2axi is the sum of the entries in row i for 1 ≤ i ≤ 2b + 1 and

• (2b + 1)yj is the sum of the entries in column j for 1 ≤ j ≤ 2a.

For the first b rows in M , we define each entry in row i to be i where
1 ≤ i ≤ b. Hence, M has the form shown in (1). Thus, the sum of the
entries in row i is 2axi = 2ai for 1 ≤ i ≤ b. Next, we determine the
remaining entries in the last b+ 1 rows of M . Since we want the sum of the

entries in column 1 to be (2b+1)y1 = (2b+1)(b+1) and
∑b

i=1 ai1 = b(b+1)
2 ,

it follows that

2b+1∑

i=b+1

ai1 = (2b + 1)(b + 1)− b(b + 1)

2
=

(b + 1)(3b + 2)

2
.

We now choose each of the remaining b+1 entries ab+1,1, ab+2,1, . . . , a2b+1,1

in column 1 as either
⌊

(b + 1)(3b + 2)

2(b + 1)

⌋
=

⌊
3b + 2

2

⌋
or

⌈
(b + 1)(3b + 2)

2(b + 1)

⌉
=

⌈
3b + 2

2

⌉

so that the sequence ab+1,1, ab+2,1, . . . , a2b+1,1 is nondecreasing and the
column sum is (2b + 1)y1 = (2b + 1)(b + 1). Furthermore, since we want
the sum of the entrees in row b+ 1 to be 2axb+1 = 2a(b+ a+ 1), we choose
each of the entries ab+1,2, ab+1,3, . . . , ab+1,2a as either

⌊
2a(b + a + 1)− ab+1,1

2a− 1

⌋
or

⌈
2a(b + a + 1)− ab+1,1

2a− 1

⌉
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so that the sequence ab+1,2, ab+1,3, . . ., ab+1,2a is nondecreasing and the
row sum is 2axb+1 = 2a(b + a + 1). We now proceed in this manner to
determine the remaining entries in M .

Finally, we define the edge coloring c : E(G)→ N by c(wiuj) = aij for every
pair i, j of integers where 1 ≤ i ≤ 2b + 1 and 1 ≤ j ≤ 2a. By the defining
property of the matrix M , it follows that cm(uj) = xj for 1 ≤ j ≤ 2a and
cm(wi) = yi for 1 ≤ i ≤ 2b + 1. Thus, {cm(v) : v ∈ V (G)} = X ∪ Y =
[2a + 2b + 1] and so rm(c) = 2a + 2b + 1 = s + t. As an illustration,
we construct a rainbow mean coloring c of K4,7 with rm(c) = 11. In this
case, a = 2 and b = 3. We partition the set [11] into the two sets X =
[3] ∪ {6} ∪ [9, 11] = {1, 2, 3, 6, 9, 10, 11} and Y = [4, 5] ∪ [7, 8] = {4, 5, 7, 8}.
Thus, x = 42 and y = 24 and so 4x = 7y = 168. Using the technique
described above, we obtain the 7× 4 matrix

M =




1 1 1 1
2 2 2 2
3 3 3 3
5 6 6 7
5 7 12 12
6 8 12 14
6 8 13 17




.

The resulting rainbow mean coloring c of K4,7 with rm(c) = 11 is shown in
Figure 3, where the four vertices u1, u2, u3, u4 in the partite set U of K4,7

are drawn in bold.

3

4 5 7 8

6 9 10 11

1 2 3

1 1
2 2 3

3

5 6 6
7

12
12

14

8

13 17

5 12 6

8

67

1

1 2 2
3

Figure 3: Constructing a rainbow mean coloring of K4,7

Case 2. st is odd. We may assume that s ≤ t. By Proposition 3.2, it suffices
to show that there is a rainbow mean coloring c of Ks,t with rm(c) = s+t+1.
We proceed with the following three steps:
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(1) Choose an appropriate element p ∈ [s + t + 1] and then partition
the (s + t)-element set [s + t + 1] − {p} into the two subsets X =
{x1, x2, . . . , xt} and Y = {y1, y2, . . . , ys} where x1 < x2 < · · · < xt

and y1 < y2 < · · · < ys such that s
∑t

i=1 xi = t
∑s

j=1 yj .

(2) Construct a t × s matrix M = [aij ] such that sxi is the sum of the
entries in row i for 1 ≤ i ≤ t and tyj is the sum of the entries in
column j for 1 ≤ j ≤ s.

(3) Use the matrix M = [aij ] to construct a rainbow mean coloring c
of Ks,t. For each vertex uj of Ks,t where 1 ≤ j ≤ s, we define
a t-vector ~uj = (a1j , a2j , . . . , atj) to be column j in M . This in
turn gives rise to the corresponding s-vectors ~wi = (ai1, ai2, . . . , ais)
to be row i in M for each vertex wi where 1 ≤ i ≤ t. The edge
coloring c : E(Ks,t)→ N is defined by c(wiuj) = aij for each pair i, j
of integers with 1 ≤ i ≤ t and 1 ≤ j ≤ s. Since the chromatic means
of the vertices of Ks,t are given by cm(uj) = xj for 1 ≤ j ≤ s and
cm(wi) = yi for 1 ≤ i ≤ t, it follows that {cm(v) : v ∈ V (Ks,t)} =
[s + t + 1]− {p} and so rm(c) = s + t + 1.

Since s and t are both odd integers, it follows that s = 2a+1 and t = 2b+1
for some positive integers a and b with a ≤ b. We consider two subcases,
according to whether a = b or a < b.

Subcase 2.1. a = b. Figure 4 shows a rainbow mean coloring c of K3,3

with rm(c) = 7. Thus, we may assume that a = b ≥ 2 and show that
rm(K2a+1,2a+1) = 4a + 3.

11 73
2 4

2 4 5

10
8

3

3
1

1

Figure 4: A rainbow mean coloring of K3,3

First, we partition the (4a+ 2)-element set [4a+ 3]−{2a+ 2} into the two
subsets

X = [2, a + 2] ∪ [3a + 4, 4a + 3]

Y = {1} ∪ [a + 3, 2a + 1] ∪ [2a + 3, 3a + 3],
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where then |X| = |Y | = 2a + 1. Let X = {x1, x2, . . . , x2a+1} where x1 <
x2 < · · · < x2a+1 and Y = {y1, y2, . . . , y2a+1} where y1 < y2 < · · · < y2a+1.
Since

x =

2b+1∑

i=1

xi = 4a2 + 6a + 2 =

2a+1∑

i=1

yi = y,

it follows that (2a + 1)x = (2a + 1)y.

Next, we define a (2a + 1)× (2a + 1) square matrix M = [ai,j ] such that

• (2a + 1)xi is the sum of the entries in row i for 1 ≤ i ≤ 2a + 1 and

• (2a + 1)yj is the sum of the entries in column j for 1 ≤ j ≤ 2a + 1.

The first column and the first a + 1 rows of M are defined as follows:

? Every entry in column 1 is 1;

? For 1 ≤ i ≤ a + 1, aij = i + 1 for 2 ≤ j ≤ 2a and ai,2a+1 = 2i + 1.

Thus,

M =




1 2 2 2 · · · 2 3
1 3 3 3 · · · 3 5
1 4 4 4 · · · 4 7
...

...
...

...
...

...
...

...
...

...
...

...
...

...
1 a + 2 a + 2 a + 2 · · · a + 2 2a + 3
...
...
1




.

Hence, for 1 ≤ i ≤ a + 1, the sum of the entries in row i is (2a + 1)xi =
(2a + 1)(i + 1) and the sum of the entries in column 1 is (2a + 1)y1 =
(2a+ 1) · 1 = 2a+ 1. Next, we define the remaining entries in M . Since we
want the sum of the entries in column 2 to be (2a + 1)y2 = (2a + 1)(a + 3)

and
∑a+1

i=1 ai2 = (a+1)(a+4)
2 , it follows that

2a+1∑

i=a+2

ai2 = (2a + 1)(a + 3)− (a + 1)(a + 4)

2
=

a2 + 2a− 1

2
.
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We now choose each of the a entries aa+2,2, aa+3,2, . . . , a2a+1,2 in column 2
as ⌊

a2 + 2a− 1

2a

⌋
or

⌈
a2 + 2a− 1

2a

⌉

so that the sequence aa+2,2, aa+3,2, . . . , a2a+1,2 is nondecreasing and the
column sum is (2a+1)y2 = (2a+1)(a+3). Furthermore, since we want the
sum of the entrees in row (a+ 2) to be (2a+ 1)xa+2 = (2a+ 1)(3a+ 4), we
choose each of the 2a− 1 entries aa+2,3, aa+2,4, . . . , aa+2,2a+1 in row (a+ 2)
as either
⌊

(2a + 1)(3a + 4)− 1− aa+2,2

2a− 1

⌋
or

⌈
(2a + 1)(3a + 4)− 1− aa+2,2

2a− 1

⌉

so that the sequence aa+2,3, aa+2,4, . . . , aa+2,2a+1 is nondecreasing and the
row sum is (2a+1)xa+2 = (2a+1)(3a+4). We now proceed in this manner
to determine the remaining entries in M .

The matrix M then gives rise to a rainbow mean coloring c of K2a+1,2a+1

with the desired properties. As an illustration, we construct a rainbow mean
coloring c of K5,5 with rm(c) = 11. In this case, a = b = 2. We partition the
set [11] − {6} into the two sets X = {2, 3, 4, 10, 11} and Y = {1, 5, 7, 8, 9}.
Thus, x = y = 30. Using the technique described above, we obtain the
5× 5 matrix

M =




1 2 2 2 3
1 3 3 3 5
1 4 4 4 7
1 8 13 14 14
1 8 13 17 16



.

The matrix M gives rise to a rainbow mean coloring c of K5,5 with rm(c) =
11. To describe the coloring c, it is convenient to introduce additional
notation. For each vertex ui of K5,5 where 1 ≤ i ≤ 5, we define a 5-
vector ~ui = (c(uiw1), c(uiw2), . . . , c(uiw5)), which is column i in M . This,
in turn, gives rise to the corresponding 5-vectors ~wi for the vertices wi

(1 ≤ i ≤ 5), which is row i in M . The coloring c is shown in Figure 5,
where the vertices in U are drawn in bold.

Subase 2.2. a < b. Here, we show that rm(K2a+1,2b+1) = 2a+2b+3. First,
we partition the (2a + 2b + 2)-element set [2a + 2b + 3] − {a + b + 2} into
the two subsets

X = [b− a] ∪ [b + 1, a + b + 1] ∪ [a + b + 3, 2a + b + 1]

∪ [3a + b + 3, 2a + 2b + 3]

Y = [b− a + 1, b] ∪ [2a + b + 2, 3a + b + 2],
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(2,3,4,8,8)

2

7 8

4 10 11

1

3

(1,3,3,3,5) (1,4,4,4,7) (1,8,13,14,14)

5 9

(2,3,4,13,13) (2,3,4,14,17) (3,5,7,14,16)(1,1,1,1,1)

(1,8,13,17,16))(1,2,2,2,3)

Figure 5: A rainbow mean coloring of K5,5

where then |X| = 2b + 1 and |Y | = 2a + 1. Let X = {x1, x2, . . . , x2b+1}
where x1 < x2 < · · · < x2b+1 and Y = {y1, y2, . . . , y2a+1} where y1 < y2 <
· · · < y2a+1. Since

x =

2b+1∑

i=1

xi = 2b2 + 2ab + 5b + a + 2

and

y =

2a+1∑

i=1

yi = 2a2 + 2ab + 5a + b + 2,

it follows that

(2a + 1)x = (2b + 1)y = 4a2b + 4ab2 + 12ab + 2a2 + 2b2 + 5a + 5b + 2.

Next, we define a (2b + 1)× (2a + 1) matrix M = [ai,j ] such that

? (2a + 1)xi is the sum of the entries in row i for 1 ≤ i ≤ 2b + 1 and

? (2b + 1)yj is the sum of the entries in column j for 1 ≤ j ≤ 2a + 1.

For the first b − a rows in M , we define each entry in row i to be i where
1 ≤ i ≤ b− 1. That is,

M =




1 1 1 · · · · · · · · · 1
2 2 2 · · · · · · · · · 2
...

...
...

...
...

...
...

b− a b− a b− a · · · · · · · · · b− a
...

...
...

...
...

...
...



.
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Thus, the sum of the entries in row i is (2a + 1)xi = 2ai for 1 ≤ i ≤ b− a.
Next, we determine the remaining entries in M . Since we want the sum
of the entries in column 1 to be (2b + 1)y1 = (2b + 1)(b − a + 1) and∑b

i=1 ai1 = (b−a)(b−a+1)
2 , it follows that

2b+1∑

i=b+1

ai1 = (2b+1)(b−a+1)− (b− a)(b− a + 1)

2
=

(b− a + 1)(3b + a + 2)

2
.

We now choose each of the b + a + 1 entries ab−a+1,1, ab−a+2,1, . . . , a2b+1,1

as either
⌊

(b− a + 1)(3b + a + 2)

2(b + a + 1)

⌋
or

⌈
(b− a + 1)(3b + a + 2)

2(b + a + 1)

⌉

so that the sequence ab−a+1,1, ab−a+2,1, . . ., a2b+1,1 is nondecreasing and
the column sum is (2b+1)y1 = (2b+1)(b−a+1). Furthermore, since we want
the sum of the entrees in row (b−a+1) to be (2a+1)xb−a+1 = (2a+1)(b+1),
we choose each of the 2a entries ab−a+1,2, ab−a+1,3, . . . , ab−a+1,2a+1 as either

⌊
(2a + 1)(b + 1)− ab−a+1,1

2a

⌋
or

⌈
(2a + 1)(b + 1)− ab−a+1,1

2a

⌉

so that the sequence ab−a+1,2, ab−a+1,3, . . ., ab−a+1,2a+1 is nondecreasing
and the row sum is (2a+1)xb−a+1 = (2a+1)(b+1). We now proceed in this
manner to determine the remaining entries in M . The matrix M then gives
rise to a rainbow mean coloring c of K2a+1,2b+1 with the desired properties.
As an illustration, we construct a rainbow mean coloring c of K5,9 with
rm(c) = 15. In this case, a = 2 and b = 4. We partition the set [15]− {8}
into the two sets X = {1, 2, 5, 6, 7, 9, 13, 14, 15} and Y = {3, 4, 10, 11, 12}.
Thus, x = 72 and y = 40. Thus, 5x = 9y = 360. Using the technique
described above, we obtain the 5× 9 matrix

M =




1 1 1 1 1
2 2 2 2 2
3 5 5 6 6
3 4 7 8 8
3 4 15 6 7
3 5 15 19 3
4 5 15 19 22
4 5 15 19 27
4 5 15 19 32




.

The matrix M gives rise to a rainbow mean coloring c of K5,9 with rm(c) =
15. As indicated in Subcase 2.1, each vertex uj of K5,9 where 1 ≤ j ≤ 5 is
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associated with a 9-vector ~uj = (c(ujw1), c(ujw2), . . . , c(ujw9)) (which is
columm j in M). This, in turn, gives rise to the corresponding 5-vectors ~wi

for each vertex wi (which is row i in M) for 1 ≤ i ≤ 9. The coloring c is
shown in Figure 6, where the vertices in U are drawn in bold.

(1,2,3,3,3,3,4,4,4)

5 6 72

(3,4,15,6,7)

3 11 1210

(1,2,6,8,7,3,22,27,32)

4

1

(1,1,1,1,1)

9 14 1513

(4,5,15,19,22) (4,5,15,19,32)

(2,2,2,2,2) (3,4,7,8,8) (4,5,15,19,27)

(1,2,6,8,6,19,19,19,19)(1,2,5,4,4,5,5,5,5)

(1,2,5,7,15,15,15,15,15)

(3,5,15,19,3)

(3,5,5,6,6)

Figure 6: A rainbow mean coloring of K5,9

All of the graphs considered in this article thereby substantiate Conjec-
ture 1.7. Indeed, the only Type 3 graphs found thus far are stars of even
order. Consequently, not only may Conjecture 1.7 be true but if the stars
of even order are excluded, all other connected graphs may be Type 1 or
Type 2.

Acknowledgments: We are grateful to the anonymous referees whose
valuable suggestions resulted in an improved paper. Furthermore, we thank
Professor Gary Chartrand for suggesting these concepts and problems to
us and kindly providing useful information on this topic.

References

[1] G. Chartrand, Highly Irregular in “Graph Theory-Favorite Conjec-
tures and Open Problems”, R. Gera, S. Hedetniemi, and C. Larson,
eds. Springer, (2016).

[2] G. Chartrand, C. Egan, and P. Zhang, How to Label a Graph.,
Springer, (2019).
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