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Abstract: The aim of this paper is to survey on the known results on
maximum scattered linear sets and MRD-codes. In particular, we investi-
gate the link between these two areas. In [57] Sheekey showed how max-
imum scattered linear sets of PG(1, qn) define square MRD-codes. Later
in [13] maximum scattered linear sets in PG(r − 1, qn), r > 2, were used
to construct non square MRD-codes. Here, we point out a new relation
regarding the other direction. We also provide an alternative proof of the
well-known Blokhuis-Lavrauw’s bound for the rank of maximum scattered
linear sets shown in [6].

1 Introduction

Let Ω = PG(V,Fqn) = PG(r− 1, qn), q = ph, p prime. A set of points L of
Ω is called an Fq-linear set of Ω of rank k if it consists of the points defined
by the non-zero vectors of an Fq-subspace U of V of dimension k, i.e.

L = LU = {〈u〉Fqn : u ∈ U \ {0}}.

Linear sets are a generalization of subgeometries of projective spaces. The
term linear has been used for the first time by Lunardon in [39], where he
constructs special kind of blocking sets. In recent years, linear sets have
been intensively used to construct, classify or characterize many different
objects like blocking sets, two-intersection sets, complete caps, translation
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spreads of the Cayley Generalized Hexagon, translation ovoids of polar
spaces, semifield flocks, finite semifields and rank metric codes, see [36, 52,
57] and the references therein.

Let Λ = PG(W,Fqn) be a subspace of Ω and let LU be an Fq-linear set of
Ω. Then Λ ∩ LU = LW∩U , and if dimFq (W ∩ U) = i, i.e. if the Fq-linear
set Λ ∩ LU = LW∩U has rank i, we say that Λ has weight i in LU , and we
write wLU (Λ) = i. Note that if Λ has dimension s and LU has rank k, then
0 ≤ wLU (Λ) ≤ min{k, n(s + 1)}. In particular, a point P belongs to an
Fq-linear set LU if and only if wLU (P ) ≥ 1. Also, we define the maximum
field of linearity of an Fq-linear set LU as Fq` if ` is the largest integer such
that ` | n and LU is an Fq`-linear set.

One of the most natural questions about linear sets is their equivalence;
especially in the applications it is crucial to have methods to establish
whether two linear sets are equivalent or not. Two linear sets LU and
LW of Ω = PG(r − 1, qn) = PG(V,Fqn) are said to be PΓL-equivalent
(or simply projectively equivalent) if there exists ϕ ∈ PΓL(r, qn) such that
LϕU = ϕ(LU ) = LW . If U and W are Fq-subspaces of V which are in
the same ΓL(r, qn)-orbit, then LU and LW are equivalent. Indeed, if f ∈
ΓL(r, qn) and f(U) = W then, denoting by ϕf the semilinear collineation
induced by f (i.e. ϕf (〈u〉Fqn ) = 〈f(u)〉Fqn ), then ϕf (LU ) = Lf(U) = LW .
This is only a sufficient condition for the equivalence of two linear sets. In
general the ΓL(r, qn)-orbit of an Fq-subspace U of V does not determine the
PΓL(r, qn)-orbit of the corresponding linear set LU . If the ΓL(r, qn)-orbit
of U completely determines the PΓL(r, qn)-orbit of LU we call LU simple.
More precisely, LU is a simple Fq-linear set if for each Fq-subspace W of V
such that dimFq U = dimFq W and LU = LW , the subspaces U and W are
in the same ΓL(r, qn)-orbit. In [9] the authors investigated the equivalence
problem between Fq-linear sets of rank n on the projective line PG(1, qn).
The idea is to study first the ΓL(2, qn)-orbits of the subspaces defining the
linear set and then to study the equivalence between two linear sets. More
precisely, they give the following definitions of Z(ΓL)-class and ΓL-class
(see [9, Definitions 2.4 & 2.5]) of an Fq-linear set of a line.

Let LU be an Fq−linear set of PG(1, qn) = PG(V,Fqn) of rank n with
maximum field of linearity Fq.

We say that LU is of Z(ΓL)-class r if r is the greatest integer such that there
exist Fq-subspaces U1, U2, . . . , Ur of V with LUi = LU for i ∈ {1, 2, . . . , r}
and Ui 6= λUj for each λ ∈ F∗qn and for each i 6= j, i, j ∈ {1, 2, . . . , r}. We
say that LU is of ΓL-class s if s is the greatest integer such that there exist
Fq-subspaces U1, . . . , Us of V with LUi = LU for i ∈ {1, . . . , s} and there is
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no f ∈ ΓL(2, qn) such that Ui = Ufj for each i 6= j, i, j ∈ {1, 2, . . . , s}.

If LU is of ΓL-class one, then LU is simple. For n ≤ 4, any linear set of
rank n in PG(1, qn) is simple [9, Theorem 4.5].

The ΓL-class of a linear set is a projective invariant (by [9, Proposition 2.6])
and hence plays a crucial role in the study of linear sets up to equivalence.
See [9, 10, 17] for further details on the equivalence issue.

In Sections 2 and 3, we will survey on maximum scattered linear sets
and MRD-codes, dealing with links between them in Section 4. In [13],
the authors proved that starting from a maximum scattered linear set of
PG(r − 1, qn) it is possible to construct a special type of MRD-code. Our
main contribution is to prove the converse. Also, we will provide an al-
ternative proof of the Blokhuis-Lavrauw’s bound for the rank of scattered
linear sets.

2 Scattered linear sets

For an Fq-linear set LU of rank k in Ω = PG(r − 1, qn) = PG(V,Fqn) the
bound

|LU | ≤ qk−1 + qk−2 + . . .+ 1, (1)

holds true. Hence, LU is called scattered if it achieves the bound (1), or
equivalently if all of its points have weight one. In this case, we will also
say that U is a scattered subspace of V .

A scattered Fq–linear set LU of Ω with highest possible rank is a maximum
scattered Fq–linear set of Ω and U is called a maximum scattered subspace
of V ; see [6]. For a recent survey on the theory of scattered spaces in
Galois Geometry and its applications see [31]. Blokhuis and Lavrauw in [6]
obtained the following result on the rank of a maximum scattered linear
set.

Theorem 2.1. [6, Theorems 2.1 and 4.3] If LU is a maximum scattered
Fq-linear set of Ω = PG(r − 1, qn) of rank k, then if r is even

k =
rn

2
,

otherwise
rn− n

2
≤ k ≤ rn

2
.
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In Subsection 4.3 we will present a new proof of this bound based on the
Singleton-like bound for rank metric codes.

If r is even, explicit examples of scattered Fq-linear sets of rank rn
2 can

be found in [30, Theorem 2.5.5], where Lavrauw proves that the linear set
defined by

U = {(x1, x2, . . . , xr/2, xq1, xq2, . . . , xqr/2) : xi ∈ Fqn , i ∈ {1, . . . , r/2}},

is a (maximum) scattered Fq-linear set of rank rn
2 of PG(r − 1, qn).

A special class of maximum scattered linear sets when r is even are those of
pseudoregulus type. They have been first introduced by Marino, Trombetti
and the first author in [47] and further generalized by Lavrauw and Van
de Voorde in [35]; their name comes from the geometric construction of
Freeman in [25].

Let L = LU be a scattered Fq-linear set of Ω = PG(2t− 1, qn) of rank tn,
t, n ≥ 2. We say that L is of pseudoregulus type if

1. there exist m =
qnt − 1

qn − 1
pairwise disjoint lines of Ω, say s1, s2, . . . , sm

such that
ωL(si) = n for each i = 1, . . . ,m;

2. there exist exactly two (t − 1)-dimensional subspaces T1 and T2 of
Ω disjoint from L such that Tj ∩ si 6= ∅ for each i = 1, . . . ,m and
j = 1, 2.

The set of lines PL is said the Fq-pseudoregulus (or simply pseudoregulus)
of Ω associated with L and we call T1 and T2 the transversal spaces of PL
(or transversal spaces of L).

All maximum scattered linear sets of Ω = PG(2t − 1, q3), with t ≥ 2, are
of pseudoregulus type and they are all equivalent under the action of the
collineation group of Ω as proved in [34, Theorem 5] for the case t = 1,
in [47, Propositions 2.7 and 2.8] for the case t = 2 and [35, Section 3
and Theorem 4] for the case t ≥ 3. In [41, Theorem 3.11], the authors
characterize the linear sets of pseudoregulus type in terms of the associated
projected subgeometry and they also show how to construct them.
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Theorem 2.2. [41, Theorem 3.5] Let T1 = PG(U1,Fqn) and
T2 = PG(U2,Fqn) be two disjoint (t − 1)-subspaces of Ω = PG(V,Fqn) =
PG(2t− 1, qn), with n > 1, and let φf be a semilinear collineation between
T1 and T2 having as companion automorphism an element σ ∈ Aut(Fqn)
such that Fix(σ) = Fq. Then, for each ρ ∈ F∗qn , the set

Lρ,f = {〈u + ρf(u)〉Fqn : u ∈ U1 \ {0}}
is an Fq-linear set of Ω of pseudoregulus type whose associated pseudoregulus
is PLρ,f = {〈P, Pφf 〉Fqn : P ∈ T1}, with transversal spaces T1 and T2.

In [41, Theorem 3.12] the authors prove that linear sets of pseudoregulus
type in Ω can be written as Lρ,f in previous theorem. In case of the
projective line, i.e. Ω = PG(1, qn), it has been proved in [41, Section 4]
and in [22, Remark 2.2] that all the linear sets of pseudoregulus type in
PG(1, qn) are PGL(2, qn)-equivalent and hence we can define them as all
the linear sets which are PGL(2, qn)-equivalent to

L = {〈(x, xq)〉Fqn : x ∈ F∗qn}.
Every linear set can be obtained as a projection of a suitable subgeometry
of a suitable subspace as vertex, see [42, Theorems 1 and 2]. The projecting
configurations which gives the linear set L were described geometrically by
Csajbók and Zanella in [18].

In the r odd case the situation is slightly more complicated. For n = 2,
Baer subgeometries PG(r − 1, q) of PG(r − 1, q2) define scattered linear
sets of rank r for each q and r, so they attain Blokhuis-Lavrauw’s bound.
For r = 3 and n = 4, Ball, Blokhuis and Lavrauw in [2, Theorem 3.1]
(see also [30, Theorem 2.7.9]) prove that there exist α, β ∈ Fq12 (without
giving explicit conditions on α and β) such that the Fq-subspace of Fq12
represented by the equation

xq
6

+ αxq
3

+ βx = 0

defines a scattered Fq-linear set of rank 6 in PG(2, q4), so the bound is
attained again.

Existence results have been proved for n − 1 ≤ r, n even and q > 2 in [6,
Theorem 4.4]. Explicit constructions of scattered linear sets of rank rn/2 in
PG(r−1, qn), r odd, n even, have been shown by Bartoli, Giulietti, Marino
and the first author of this paper in [3, Theorem 1.2] for infinitely many
values of r, n and q. More precisely, they first find the following three
families [3, Theorems 2.2, 2.3 and 2.10] of maximum scattered Fq-linear
sets. Let n = 2t and let PG(r − 1, q2t) = PG(Fq2rt ,Fq2t).
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• Let ω be an element of Fq2t \Fqt , then Fqrt(ω) = Fq2rt . For any prime
power q ≥ 2 and any integer t ≥ 2 with gcd(t, r) = 1, the Fq-linear
set defined by

{axqi + xω : x ∈ Fqrt}
and satisfying the assumptions gcd(i, 2t) = 1, gcd(i, rt) = r and
Nqrt/qr (a) /∈ Fq is a scattered Fq-linear set of PG(r − 1, q2t) of rank

rt =
rn

2
.

• Let ω be an element of Fq2t \Fqt . For any prime power q ≡ 1 (mod r)
and any integer t ≥ 2, the Fq-linear set defined by

{axqi + xω : x ∈ Fqrt}

and satisfying the assumptions gcd(i, 2t) = gcd(i, rt) = 1 and

(Nqrt/q(a))
q−1
r 6= 1 is a scattered Fq-linear set of PG(r − 1, q2t) of

rank rt =
rn

2
.

• Now, let r = 3. For each integer t ≥ 2, the F2-linear set defined by

{x2 + bx2
2t+1

+ xω : x ∈ F23t}

with b ∈ F∗23t , N23t/2t(b) 6= 1 and such that x + bx2
2t+1−1 /∈ F2t

for each x ∈ F∗23t , is a scattered F2-linear set of PG(2, 22t) of rank

3t =
rn

2
.

Therefore, by using [3, Theorem 3.1] and by decomposing V as a direct
sum of a fixed number of s-subspaces, one can get the following result.

Theorem 2.3. [3, Theorem 1.2] There exist examples of maximum scat-

tered Fq-linear sets in PG(r − 1, qn) of rank
rn

2
in the following cases:

1. q = 2, for each odd r ≥ 3 and even n ≥ 4,

2. for each q ≥ 2, odd r ≥ 3 and even n ≥ 4 such that gcd(n, s) = 1, for
some odd s with 3 ≤ s ≤ n,

3. for each odd r ≥ 3, even n ≥ 4 and q ≡ 1 (mod s) with s odd and
3 ≤ s ≤ n.
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The previous result does not cover all cases. The only missing case is when
n is even, r is odd, 6 | n and q > 2, q 6≡ 1 (mod 3). The authors in
[13] construct Fq-linear sets of rank 3n/2 of PG(2, qn), n even, proving the
sharpness of the bound also in the remaining open cases. The construction
relies on the existence of non-scattered linear sets of rank 3t of PG(1, q3t)
(with t = n/2) defined by a well-chosen binomial polynomial. More pre-
cisely, they prove the following:

Theorem 2.4. [13, Theorem 2.4] Let ω ∈ Fq2t \Fqt . For any prime power
q and any integer t ≥ 2, there exist a, b ∈ F∗q3t and an integer 1 ≤ i ≤ 3t−1

such that gcd(i, 2t) = 1 and the Fq-linear set LU of rank 3t of the projective
plane PG(Fq6t ,Fq2t) = PG(2, q2t), where

U = {axqi + bxq
2t+i

+ ωx : x ∈ Fq3t},

is a scattered linear set.

As a consequence, for any integers r, n ≥ 2, rn even, and for any prime
power q ≥ 2 the rank of a maximum scattered Fq-linear set of PG(r−1, qn)
is rn/2.

The projective line case attracted a lot of attention, especially because of
its connection with MRD-codes that we will explore in the next section.

If the point 〈(0, 1)〉Fqn is not contained in the linear set LU of rank n of
PG(1, qn) (which we can always assume after a suitable projectivity), then
U = Uf := {(x, f(x)) : x ∈ Fqn} for some q-polynomial

f(x) =

n−1∑

i=0

aix
qi ∈ Fqn [x].

In this case we will denote the associated linear set by Lf .

Up to ΓL(2, qn)-equivalence, the known non-equivalent maximum scattered
Fq-subspaces of F2

qn are

• U1 := {(x, xqs) : x ∈ Fqn}, 1 ≤ s ≤ n− 1, gcd(s, n) = 1, found in [6];

• U2 := {(x, δxqs + xq
n−s

) : x ∈ Fqn}, n ≥ 4, Nqn/q(δ) /∈ {0, 1}, q 6= 2,
gcd(s, n) = 1, found in [43] for s = 1 and in [57] for s 6= 1;

• U3 := {(x, δxqs + xq
s+n/2

) : x ∈ Fqn}, n ∈ {6, 8}, gcd(s, n/2) = 1,
Nqn/qn/2(δ) /∈ {0, 1}, with some conditions on δ and q, found in [11];

• U4 := {(x, xq + xq
3

+ δxq
5

) : x ∈ Fq6}, q odd and δ2 + δ = 1, see [15]
for q ≡ 0,±1 (mod 5), and [46] for the remaining congruences of q;

• U5 := {(x, hq−1xq−hq2−1xq2 +xq
4

+xq
5

) : x ∈ Fq6}, h ∈ Fq6 , hq
3+1 =

−1 and q odd, [4, 63].
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Note that LU1 is the linear set of pseudoregulus type in PG(1, qn). Its
Z(ΓL)-class and its ΓL-class are known. Denote by ϕ the Euler phi func-
tion. By determining the transversal spaces of the associated variety,
Lavrauw, Sheekey and Zanella in [33] proved that its Z(ΓL)-class is ϕ(n).

Csajbók and Zanella in [17] proved that its ΓL-class is ϕ(n)
2 . In par-

ticular, this means that to check the PGL(2, qn)-equivalence between an
Fq-linear set LU and LU1 in PG(1, qn), we have to check whether U is
Z(GL)(2, qn)-equivalent with one of the ϕ(n) subspaces of the form U1,
where Z(GL)(2, qn) is the centre of GL(2, qn), while to check the PΓL(2, qn)-
equivalence between LU and LU1

, we have to check whether U is ΓL(2, qn)-

equivalent with one of the
ϕ(n)

2
subspaces of the form U1, since the sub-

spaces

{(x, xqs) : x ∈ Fqn} and {(x, xqn−s) : x ∈ Fqn}
are ΓL(2, qn)-equivalent. In [43, Theorem 3] it is proved that LU2

and LU1

are not PΓL(2, qn)-equivalent when q > 3, n ≥ 4 and δ 6= 0.

More recently, extending the definition given in [60], in [14], jointly with
Csajbók and Marino, we introduced the family of h-scattered linear sets.
A linear set LU of PG(r− 1, qn) = PG(V,Fqn) is called a h-scattered linear
set if 〈LU 〉 = PG(r−1, qn) and for each (h−1)-subspace Ω of PG(r−1, qn)
we have

wLU (Ω) ≤ h.
In this case, we also say that U is an h-scattered Fq-subspace of V . When
h = r− 1 we obtain the scattered linear sets w.r.t. hyperplanes introduced
by Sheekey and Van de Voorde in [60]. We prove that the rank k of an h-
scattered linear set of PG(r−1, qn), if k > r, is at most rn

h+1 , otherwise it is a
canonical subgeometry of PG(r−1, qn), generalizing the bound of Blokhuis
and Lavrauw. An h-scattered linear set LU of PG(r − 1, qn) = PG(V,Fqn)
is called maximum h-scattered (and U is called maximum h-scattered Fq-
subspace of V ) if its rank is rn

h+1 . Also, we determine the spectrum of the
weights of the hyperplanes of PG(r − 1, qn) w.r.t. a maximum h-scattered
linear set, which, together with a new type of duality for linear sets, bring us
to prove the existence of maximum h-scattered linear sets in PG(r− 1, qn)
with some conditions on r, n and h. It is currently an open question whether
for each r, n and h such that h+ 1 | rn there exists a maximum h-scattered
linear set in PG(r − 1, qn).
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3 MRD-codes

In 1978 Delsarte in [20] introduced rank metric codes as q-analogs of the
usual linear error correcting codes endowed with Hamming distance. He
studied rank metric codes in terms of bilinear forms on two finite-dimensional
vector spaces over a finite fields and he called Singleton systems those known
as maximum rank distance codes. The set of m×n matrices Fm×nq over Fq
is a rank metric Fq-space with rank metric distance defined by

d(A,B) = rk (A−B)

for A,B ∈ Fm×nq . A subset C ⊆ Fm×nq is called a rank metric code (RM-code
for short). The minimum distance of C is

d(C) = min
A,B∈C, A 6=B

{d(A,B)}.

Also, we say that C has parameters (n,m, q; d), where d is the minimum
distance of C. When C is an Fq-linear subspace of Fm×nq , we say that C is an
Fq-linear RM-code and its dimension dimFq C is defined to be the dimension
of C as a subspace over Fq. In the same paper, Delsarte also showed that
the parameters of these codes must obey a Singleton-like bound: let C be
an RM-code of Fm×nq and let d be its minimum distance, then

| C | ≤ qmax{m,n}(min{m,n}−d+1). (2)

When equality holds, we call C maximum rank distance (MRD for short)
code. Examples of MRD-codes were first found by Delsarte in [20] and
rediscovered by Gabidulin in [26]; we will show the known constructions in
Subsection 3.1.

Let C ⊆ Fm×nq be a rank metric code, the adjoint code of C is

C> = {Ct : C ∈ C}.

Define the symmetric bilinear form 〈·, ·〉 on Fm×nq by

〈M,N〉 = Tr(MN t).

The Delsarte dual code of an Fq-linear RM-code C is

C⊥ = {N ∈ Fm×nq : 〈M,N〉 = 0 for eachM ∈ C}.

By using the machinery of association schemes, Delsarte in [20] proved the
following result.
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Lemma 3.1. [20, Theorem 5.5] Let C ⊆ Fm×nq be an Fq-linear MRD-code

of dimension k with d > 1. Then the Delsarte dual code C⊥ ⊆ Fm×nq is an
MRD-code of dimension mn− k.

An elementary proof of the result above can be found in [55].

Because of the classifications of the isometries of Fm×nq with m,n ≥ 2 (see

e.g. [62, Theorem 3.4]), if m 6= n two RM-codes C and C′ are equivalent if
and only if there exist X ∈ GL(m, q), Y ∈ GL(n, q), Z ∈ Fm×nq and a field
automorphism σ of Fq such that

C′ = {XCσY + Z : C ∈ C}.

If m = n we have two possible definitions:

1. C and C′ are equivalent if there exist invertible matrices X,Y ∈ Fn×nq ,
Z ∈ Fn×nq and a field automorphism σ of Fq such that

C′ = {XCσY + Z : C ∈ C}.

2. C and C′ are weakly equivalent if there exist invertible matrices A,B ∈
Fn×nq , Z ∈ Fn×nq and a field automorphism σ of Fq such that

C′ = {XCσY + Z : C ∈ C} or C′ = {X(Ct)σY + Z : C ∈ C}.

Note that, if C is an RM-code, then the set of all RM-codes weakly equiva-
lent to C is the union of the set of all RM-codes equivalent to C and the set
of all RM-codes equivalent to C>. When C and C′ are Fq-linear, we may
always assume that Z = 0. Indeed, for C = 0 we get Z ∈ C′ and hence

C′−Z = {C ′ − Z : C ′ ∈ C′} = C′ .

For further details on the equivalence of RD-codes see also [5, 49].

The weight of a codeword C ∈ C is the rank of the matrix corresponding to
C. The spectrum of weights of an MRD-code is “complete” in the following
sense. Denote by Ai(C) the number of codewords of weight i of an RM-code
C, then the following holds.

Lemma 3.2. [44, Lemma 2.1] Let C be an MRD-code in Fm×nq with mini-
mum distance d and suppose m ≤ n. Assume that the null matrix O is in
C. Then, for any 0 ≤ l ≤ m− d, we have Ad+l(C) > 0, i.e. there exists at
least one matrix C ∈ C such that rk(C) = d+ l.
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Delsarte in [20] (and later Gabidulin in [26]) precisely determine the weight
distribution of an MRD-code.

Theorem 3.3. Let C be an MRD-code in Fm×nq with minimum distance d
and suppose m ≤ n. Then

Ad+l(C) =

[
m

d+ l

]

q

l∑

t=0

(−1)t−l
[
l + d

l − t

]

q

q(
l−t
2 )(qn(t+1) − 1),

for l ∈ {0, 1, . . . ,m − d}. In particular, the number of codewords with
minimum weight d is

Ad(C) =

[
m

d

]

q

(qn − 1) =
(qn − 1)(qm − 1)(qm−1 − 1) · · · (qm−d+1 − 1)

(qd − 1)(qd−1 − 1) · · · (q − 1)
.

(3)

In general, it is difficult to determine whether two RM-codes are equivalent
or not. Idealiser are useful tools criterion to handle the equivalence issue.

Let C ⊂ Fm×nq be an RM-code; its left and right idealisers L(C) and R(C)
are defined as

L(C) = {Y ∈ Fm×mq : Y C ∈ C for all C ∈ C},

R(C) = {Z ∈ Fn×nq : CZ ∈ C for all C ∈ C}.
These notions have been introduced by Liebhold and Nebe in [38, Definition
3.1]. Such sets appear also in the paper of Lunardon, Trombetti and Zhou
[44], where they are respectively called middle nucleus and right nucleus;
therein the authors investigate these sets proving the following results.

Result 3.4. [44, Propositions 4.1 and 4.2, Theorem 5.4 & Corollary 5.6]
If C1 and C2 are equivalent Fq-linear RM-codes of Fm×nq , then their left
(resp. right) idealisers are also equivalent. Let C be an Fq-linear RM-code
of Fm×nq . The following statements hold:

(a) L(C>) = R(C)> and R(C>) = L(C)>;

(b) L(C⊥) = L(C)> and R(C⊥) = R(C)>.

Suppose that C is an Fq-linear MRD-code of Fm×nq with minimum distance
d > 1. If m ≤ n, then L(C) is a finite field with |L(C)| ≤ qm. If m ≥ n,
then R(C) is a finite field with |R(C)| ≤ qn. In particular, when m = n
then L(C) and R(C) are both finite fields.
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In [19] de la Cruz, Kiermaier, Wassermann and Willems point out the
one-to-one correspondence between quasifields and MRD-codes of Fn×nq

with minimum distance n. For definitions and properties of quasifields and
semifields we refer to [21, 32].

Theorem 3.5. [19, Theorems 2, 3 & 4] If K is a finite field then

• MRD-codes in Kn×n (containing the zero and identity matrix) with
minimum distance n correspond to finite quasifields Q with K ≤ kerQ
and dimKQ = n.

• Additively closed MRD-codes (containing the identity matrix) in Kn×n
with minimum distance n correspond to finite semifields S with K ≤
kerS and dimK S = n.

• K-linear MRD-codes (containing the identity matrix) in Kn×n with
minimum distance n correspond to finite division algebras A over K
where K ≤ Z(A) and dimKA = n.

3.1 Representation as linearized polynomials and
known examples of MRD-codes

Any Fq-linear rank metric code over Fq can be equivalently defined either
as a subspace of matrices in Fm×nq or as a subspace of Hom(Vn, Vm), where
Vi is an i-dimensional Fq-vector space. In the present section we shall recall
a special representation in terms of linearized polynomials.

Consider two vector spaces Vn and Vm over Fq with dimension respectively
n and m, respectively. If n ≥ m we can always regard Vm as a subspace of
Vn and identify Hom(Vn, Vm) with the subspace of those ϕ ∈ Hom(Vn, Vn)
with Im(ϕ) ⊆ Vm. Also, Vn ∼= Fqn , when Fqn is considered as a Fq-vector
space of dimension n. Let now Homq(Fqn) := Homq(Fqn ,Fqn) be the set
of all Fq–linear Fqn → Fqn maps. It is well known that each element of
Homq(Fqn) can be represented in a unique way as a q–polynomial over Fqn
modulo xq

n − x; see [37]. In other words, for any ϕ ∈ Homq(Fqn) there is
an unique polynomial f(x) of the form

f(x) :=

n−1∑

i=0

aix
qi

with ai ∈ Fqn such that

∀x ∈ Fqn : ϕ(x) = f(x) = a0x+ a1x
q + · · ·+ an−1x

qn−1

.
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The set L̃n,q of the q-polynomials over Fqn with degree less than or equal
to qn−1 with the usual sum and scalar multiplication is a vector space over
Fqn . When it is regarded as a vector space over Fq, its dimension is n2

and it is isomorphic to Fn×nq . Actually, L̃n,q endowed with the product ◦
induced by the functional composition in Homq(Fqn) modulo xq

n − x is an
algebra over Fq.

Hence, it is possible to see that any Fq-linear rank metric code might be

regarded as a suitable Fq-subspace of L̃n,q. So, the definitions given for rank
metric codes in Fm×nq may be reformulated in the linearized polynomials
framework.

Two Fq-linear rank metric codes C and C′ are equivalent if and only if
there exist two invertible q-polynomials h and g and a field automorphism

σ such that C′ = {h ◦ fσ ◦ g : f ∈ C}, where if f(x) :=

n−1∑

i=0

aix
qi then

fσ(x) =

n−1∑

i=0

aσi x
qi .

The notion of Delsarte dual code can be written in terms of q-polynomialsi,
see for example [45, Secton 2], as follows: let b : L̃n,q × L̃n,q → Fq be the
bilinear form given by

b(f, g) = Trqn/q

(
n−1∑

i=0

figi

)

where f(x) =

n−1∑

i=0

fix
qi and g(x) =

n−1∑

i=0

gix
qi ∈ Fqn [x] and we denote by

Trqn/q the trace function Fqn → Fq trace function, that is, Trqn/q(x) =∑n−1
i=0 x

qi . The Delsarte dual code C⊥ of an Fq-subspace C of L̃n,q is

C⊥ = {f ∈ L̃n,q : b(f, g) = 0, ∀g ∈ C}.

Recall that the adjoint f̂ of the linearized polynomial

f(x) =

n−1∑

i=0

aix
qi ∈ L̃n,q

with respect to the bilinear form b is

f̂(x) =

n−1∑

i=0

aq
n−i

i xq
n−i

.
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So, the adjoint code C> of a set of q-polynomials C is

C> = {f̂ : f ∈ C} ⊆ L̃n,q.

Furthermore, the left and right idealisers of an Fq-linear code C ⊆ L̃n,q can
be written as

L(C) = {ϕ(x) ∈ L̃n,q : ϕ ◦ f ∈ C for all f ∈ C};

R(C) = {ϕ(x) ∈ L̃n,q : f ◦ ϕ ∈ C for all f ∈ C}.

When L(C) (resp. R(C)) is equal to Fn = {αx : α ∈ Fqn} we say that C is
Fqn -linear on the left (resp. right) (or simply Fqn -linear if it is clear from
the context). In the literature it is quite common to find the term Fqn -linear

instead of Fqn -linear on the left. Of course, recalling that f̂ ◦ g = ĝ ◦ f̂ , if C
is Fqn-linear on the left, then C> is Fqn -linear on the right. The following
result holds.

Result 3.6. [11, Theorem 6.1][12, Theorem 2.2] Let C be an Fq-linear
MRD-code of dimension nk with parameters (n, n, q;n−k+ 1). Then L(C)
(resp. R(C)) has maximum order qn if and only if there exists an MRD-code
C′ equivalent to C which is Fqn-linear on the left (resp. on the right).

Now, we are going to present the known maximum rank distance codes by
using their representation as sets of linearized polynomials of L̃n,q. In [20],
Delsarte gives the first construction for linear MRD-codes (he calls such
sets Singleton systems), though from the perspective of bilinear forms. Few
years later, Gabidulin in [26, Section 4] presents the same class of MRD-
codes by using linearized polynomials. Although these codes have been
originally discovered by Delsarte, they are called Gabidulin codes and they
can be written as follows:

Gk = {a0x+ a1x
q + . . .+ ak−1x

qk−1

: a0, . . . , ak−1 ∈ Fqn}
= 〈x, xq, . . . , xqk−1〉Fqn ,

with k ≤ n− 1 and it results to be Fqn -linear on the left and on the right.
Kshevetskiy and Gabidulin in [29] generalize the previous construction ob-
taining the so-called generalized Gabidulin codes

Gk,s = 〈x, xqs , . . . , xqs(k−1)〉Fqn ,

with gcd(s, n) = 1 and k ≤ n− 1. Gk,s is an Fq-linear MRD-code with pa-
rameters (n, n, q;n−k+1) and L(Gk,s) = R(Gk,s) ' Fqn , see [38, Lemma 4.1
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& Theorem 4.5] and [49, Theorem IV.4]. Note that, as proved in [26, 29],
this family is closed by the Delsarte duality and by the adjoint operation,
more precisely G⊥k,s is equivalent to Gn−k,s and G>k,s is equivalent to itself.
Note that the corresponding quasifield of a generalized Gabidulin code with
minimum distance n and k = 1 is a field because of their idealisers. Fur-
thermore, generalized Gabidulin codes have been characterized in [28].

More recently, Sheekey in [57] proves that the set

Hk(η, h) = {a0x+ a1x
q + . . .+ ak−1x

qk−1

+ aq
h

0 ηxq
k

: ai ∈ Fqn},
with k ≤ n − 1 and η ∈ Fqn such that Nqn/q(η) 6= (−1)nk, is an Fq-linear
MRD-code of dimension nk with parameters (n, n, q;n− k+ 1). This code
is known as twisted Gabidulin code. It is possible to replace q by qs (cf. [57,
Remark 9]), with gcd(s, n) = 1, obtaining that the set

Hk,s(η, h) = {a0x+ a1x
qs + . . .+ ak−1x

qs(k−1)

+ aq
sh

0 ηxq
sk

: ai ∈ Fqn},
with k ≤ n − 1 and η ∈ Fqn such that Nqn/q(η) 6= (−1)nk, is an Fq-
linear MRD-code of dimension nk with parameters (n, n, q;n−k+1). This
code is called generalized twisted Gabidulin code. Lunardon, Trombetti and
Zhou in [45] determined the automorphism group of the generalized twisted
Gabidulin codes and, up to equivalence, they proved that the generalized
Gabidulin codes and twisted Gabidulin codes are both proper subsets of
this class.

Clearly, with s = 1, Hk,s(η, h) is the twisted Gabidulin code Hk(η, h) and
for η = 0 it is exactly the generalized Gabidulin code Gk,s. With k = 1 the
quasifield associated with H1,s(η, h) is the generalized twisted field, which
is a presemifield found by Albert [1]. Also, the authors in [45, Corollary
5.2] determine its left and right idealisers: if η 6= 0, then

L(Hk,s(η, h)) ' Fqgcd(n,h) and R(Hk,s(η, h)) ' Fqgcd(n,sk−h) . (4)

As for the above family, the class of generalized twisted Gabidulin codes is
closed by the Delsarte duality and by the adjoint operation, more precisely
Hk,s(η, h)⊥ is equivalent to Hn−k,s(−η, n−h) and Hk,s(η, h)> is equivalent
to Hk,s(1/η, sk − h), [57, Theorem 6] and [45, Propositions 4.2 & 4.3].
Moreover, in [27] the MRD-code Hk,s(η, 0) has been characterized in terms
of intersections with some of its conjugates.

In [57, Theorem 7], the author proves that Gk,s is equivalent to Hk,1(η, h)
if and only if k ∈ {1, n− 1} and h ∈ {0, 1}, while the equivalence between
Hk,s(η, h) and Hk,t(θ, g) has been completely answered in [45, Thereom
4.4].
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A further generalization of twisted Gabidulin codes is due to Otal and
Özbudak in [50], they prove that the set

Ak,s,q0(η, h) = {a0x+ a1x
qs + . . .+ ak−1x

qs(k−1)

+ ηa
qh0
0 xq

sk

: ai ∈ Fqn},

with gcd(n, s) = 1, q = qu0 , k < n and η ∈ Fqn such that Nqn/q0(η) 6=
(−1)nku, is an Fq0 -linear MRD-code of size qnk with parameters (n, n, q;n−
k + 1). They call this family additive generalized twisted Gabidulin codes
and very recently Sheekey in [58] generalizes this further by looking at skew
polynomial rings.

Trombetti and Zhou in [61] find a new family of MRD-codes of L̃n,q, with
n even. More precisely, the set

Dk,s(γ) =
{
ax+ c1x

qs + . . .+ ck−1x
qs(k−1)

+ γbxq
sk

: ci ∈ Fqn , a, b ∈ F
q
n
2

}
,

with gcd(s, n) = 1 and γ ∈ Fqn such that Nqn/q(γ) is a non-square in Fq,
is an MRD-code of size qnk and parameters (n, n, q;n − k + 1). Both its
idealisers are isomorphic to F

q
n
2

.

Apart from the two infinite families of Fq-linear MRD-codes Fqn -linear on
the left, Gk,s and Hk,s(η, 0), there are a few other examples, known for
n ∈ {6, 7, 8}.

• In [11], Csajbók, Marino, and Zanella, jointly with the first author,
prove the following results

– for q > 4 it is always possible to find δ ∈ Fq2 such that the set

C1 = 〈x, δxq + xq
4〉Fq6

is an MRD-code with parameters (6, 6, q; 5), [11, Theorem 7.1].
In [53, Theorem 7.3], explicit conditions on δ, that guarantee
that C1 is an MRD-code, are exhibited. Its Delsarte dual code
is equivalent to

D1 = 〈xq, xq2 , xq4 , x− δqxq3〉Fq6 ,

whose parameters are (6, 6, q; 3);

– for q odd and δ ∈ Fq8 such that δ2 = −1 the set

C2 = 〈x, δxq + xq
5〉Fq8
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is an MRD-code with parameters (8, 8, q; 7), [11, Theorem 7.2].
Its Delsarte dual code is equivalent to

D2 = 〈xq, xq2 , xq3 , xq5 , xq6 , x− δxq4〉Fq8 ,

whose parameters are (8, 8, q; 3).

• In [15] Csajbók, Marino, jointly with the second author, prove that
for q odd, q ≡ 0,±1 (mod 5) and δ2 + δ = 1 the set

C3 = 〈x, xq + xq
3

+ δxq
5〉Fq6

is an MRD-code with parameters (6, 6, q; 5). Later, Marino, Mon-
tanucci and the second author in [46] prove that this holds true for
each q odd. Its Delsarte dual code is equivalent to

D3 = 〈xq, xq3 ,−x+ xq
2

, δx− xq4〉Fq6 ,

whose parameters are (6, 6, q; 3).

• In [63], Zanella and the second author prove that for q odd, q ≡ 1
(mod 4) and q ≤ 29 the set

C4 = 〈x, xq − xq2 + xq
4

+ xq
5〉Fq6

is an MRD-code with parameters (6, 6, q; 5). Its Delsarte dual code is
equivalent to

D4 = 〈xq3 , xq + xq
2

, xq − xq4 , xq − xq5〉Fq6 ,

whose parameters are (6, 6, q; 3).

• In [4], Bartoli, Zanella and the second author generalize the afore-

mentioned example, proving that for h ∈ Fq6 , hq
3+1 = −1 and q odd

the set
C′4 = 〈x, hq−1xq − hq2−1xq2 + xq

4

+ xq
5〉Fq6

is an MRD-code with parameters (6, 6, q; 5). Its Delsarte dual code is
equivalent to

D′4 = 〈xq3 , hq2xq + hqxq
2

, xq − hq−1xq4 , xq − hq−1xq5〉Fq6 ,

whose parameters are (6, 6, q; 3).

• In [12], Csajbók, Marino and Zhou, jointly with the first author, prove
the following results

Polverino and Zullo

62



– for q odd and gcd(s, 7) = 1 the set

C5 = 〈x, xqs , xq3s〉Fq7
is an MRD-code with parameters (7, 7, q; 5), [12, Theorem 3.3].
Its Delsarte dual code is equivalent to

D5 = 〈x, xq2s , xq3s , xq4s〉Fq7 ,

whose parameters are (7, 7, q; 4);

– for q ≡ 1 (mod 3) and gcd(s, 8) = 1 the set

C6 = 〈x, xqs , xq3s〉Fq8
is an MRD-code with parameters (8, 8, q; 6), [12, Theorem 3.5].
Its Delsarte dual code is equivalent to

D6 = 〈x, xq2s , xq3s , xq4s , xq5s〉Fq8
whose parameters are (8, 8, q; 4).

Note that the examples presented in [12] have maximal idealisers.

Other examples of MRD-codes, but not of square type, and further inves-
tigations can be found in [28, 54, 56]. In particular, we point out that it
is possible to produce MRD-codes in Fm×nq , with m ≤ n, from an MRD-

code in Fn×nq (hence from L̃n,q) by puncturing; such a technique has been
studied in [7, 16, 48].

The first example of non linear MRD-code has been found by Cossidente,
Marino and Pavese in [8], which has been generalized by Durante and Si-
ciliano in [24]. By using a more geometric approach Donati and Durante
present in [23] a further generalization. Also, Otal and Özbudak in [51], in
the framework of linearized polynomials, find a further example.

For a recent survey on MRD-codes see [59, 64].

4 Connections between maximum scattered
linear sets and MRD-codes

Now we will discuss connections between linear sets and MRD-codes. We
divide the results into two subsections: first we analyze the known results
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for the square case and then we characterize non-square MRD-codes with
some restrictions on the involved parameters. Finally, we conclude this
section by giving an alternative proof of the well-known Blokhuis-Lavrauw’s
bound using a completely different approach.

4.1 Square case

In [57, Section 5] Sheekey shows that maximum scattered Fq-linear sets of
PG(1, qn) yield Fq-linear MRD-codes with parameters (n, n, q;n−1). More
precisely, let Uf = {(x, f(x)) : x ∈ Fqn} be an Fq-subspace of Fqn × Fqn for
some q-polynomial f(x) over Fqn and consider the following set of linearized
polynomials over Fqn

Cf = {af(x) + bx : a, b ∈ Fqn} = 〈x, f(x)〉Fqn . (5)

Note that Cf is Fqn -linear on the left, i.e. L(Cf ) ' Fqn .

Then the following holds.

Theorem 4.1. [57] Let f ∈ L̃n,q. Then Cf is an Fq-linear MRD-code
with parameters (n, n, q;n − 1) if and only if Uf is a maximum scattered
Fq-subspace of Fqn × Fqn .

Moreover, in [11, Proposition 6.1] the authors prove that if C is an MRD-
code with parameters (n, n, q;n − 1) and with left idealiser isomorphic to
Fqn , then C is equivalent to Cf (cf. (5)), for some q-polynomial f and hence
C defines, by Theorem 4.1, a scattered Fq-subspace of Fqn × Fqn .

Also, we have the following result regarding the equivalence.

Theorem 4.2. [57, Theorem 8] If Cf and Cg are two MRD-codes arising
from maximum scattered subspaces Uf and Ug of Fqn × Fqn , then Cf and
Cg are equivalent if and only if Uf and Ug are ΓL(2, qn)-equivalent.

Hence, if Cf and Cg are equivalent, it follows that the associated linear
sets LUf and LUg are PΓL(2, qn)-equivalent. The converse does not hold in
general. Indeed, we may consider two non-equivalent generalized Gabidulin
codes, namely G2,s and G2,t, then Uxqs and Uxqt are not ΓL(2, qn)-equivalent
but LU

xq
s = LU

xq
t .

More recently, Sheekey and Van de Voorde in [60] extend Sheekey’s con-
struction. They establish the correspondence between MRD-codes with
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parameters (n, n, q;n − k) and Fqn -linear on the left, and scattered linear
sets with respect to hyperplanes of PG(k − 1, qn) above defined, see [60,
Definition 14]. By [40, Section 2.7] and [60] the next result follows, see also
[14, Result 4.7].

Result 4.3. C is an Fq-linear MRD-code of L̃n,q with minimum distance
n − k + 1 and with left-idealiser isomorphic to Fqn if and only if up to
equivalence

C = 〈f1(x), . . . , fk(x)〉Fqn
for some f1, f2, . . . , fk ∈ L̃n,q and the Fq-subspace

UC = {(f1(x), . . . , fk(x)) : x ∈ Fqn}

is a maximum (k − 1)-scattered Fq-subspace of Fkqn .

Sheekey and Van de Voorde generalize Theorem 4.2 in [60, Proposition 3.5].

Proposition 4.4. Let C and C′ be two Fq-linear MRD-codes of L̃n,q with
minimum distance n−k+1 and with left-idealisers isomorphic to Fqn . Then
UC and UC′ are ΓL(k, qn)-equivalent if and only if C and C′ are equivalent.

In contrast to the k = 2 case, when k > 2 the equivalence of MRD-codes
coincides with the projective equivalence of the corresponding linear sets.

Theorem 4.5. [14, Theorem 4.10] Let C and C′ be two Fq-linear MRD-

codes of L̃n,q with minimum distance n−k+1, k > 2, and with left-idealisers
isomorphic to Fqn . Then the linear sets LUC and LUC′ are PΓL(k, qn)-
equivalent if and only if C and C′ are equivalent.

4.2 Non-square case

We extend the link found by Sheekey in [57] showing that MRD-codes of

dimension rn with parameters
(rn

2
, n, q;n− 1

)
and right idealiser isomor-

phic to Fqn can be constructed from every maximum scattered Fq–subspace
of V (r, qn), rn even and conversely.

In [13, Theorem 3.2], jointly with Csajbók and Marino, we propose the
following construction of rank metric codes starting from an Fq-subspace
U of V = V (r, qn).
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Construction. Let U be an Fq-subspace with dimension rn
2 of V =

V (r, qn) where rn is even. Let G : V → W , with W = V ( rn2 , q), be an
Fq-linear function such that kerG = U . For v ∈ V , put

τv : λ ∈ Fqn 7→ λv ∈ V,

and also
i := max{dimFq (U ∩ 〈v〉Fqn ) : v ∈ V }.

If i < n then
CU,G := {G ◦ τv : v ∈ V } (6)

is an Fq-linear rank metric code of dimension rn, with parameters
(rn/2, n, q;n− i) and with R(CU,G) = Fn ' Fqn . Note that

G ◦ τv : Fqn →W.

Therefore, CU,G is an MRD-code if and only if i = 1, more precisely

Theorem 4.6. [13] The rank metric code CU,G is an MRD-code if and only
if U is a maximum scattered Fq-subspace of V .

We are now able to prove that each MRD-code with the same parameters
as the above defined code produces a maximum scattered Fq-subspace of
V = V (r, qn).

Theorem 4.7. Let C be an Fq-linear MRD-code with parameters
(t, n, q;n− 1) with t ≥ n and R(C) ' Fqn . If r = dimR(C) C, then rn

is even, t =
rn

2
and there exists a maximum scattered Fq-subspace U of

V (r, qn) such that the code CU,G defined in (6) is equal to C, for some
Fq-linear function G as above.

Proof. We may assume, without loss of generality, that C is a set of Fq-
linear maps defined from Fqn to V (t, q) and, up to equivalence, by Result
3.4 we may suppose that R(C) = Fn, i.e. for each f ∈ C and α ∈ Fqn it
follows that

f ◦ τα ∈ C,
where τα : x ∈ Fqn 7→ αx ∈ Fqn . Now, if r is the dimension of C as a right
vector space over R(C), then | C | = qnr and hence dimFq C = nr. By the
Singleton bound

dimFq C = nr = 2t,
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then nr is even and t =
rn

2
. Since the minimum distance is n− 1, for each

Fq-linear map f : Fqn → V ( rn2 , q) in C \{0} it results that

dimFq ker f ≤ 1.

Now consider C = V (r, qn) as a vector space over Fn with respect to the
right composition and let

U = {f ∈ C : f(1) = 0}. (7)

We prove that U is a scattered Fq-subspace of V (r, qn). Indeed, if f ∈
U \ {0} and g ∈ (〈f〉Fqn ∩ U) \ {0}, then f(1) = 0 and g = f ◦ τα with
α ∈ Fqn . Hence g(1) = f(α) = 0, i.e. 1, α ∈ ker f and since dimFq ker f ≤ 1,
it follows that 1 and α are Fq-dependent. Hence dimFq 〈f〉Fqn ∩ U = 1, i.e.
U is scattered. Also, if g ∈ C with dimFq ker g = 1, then there exists λ ∈ F∗qn
such that g ◦ τλ ∈ U . Indeed, since dimFq ker g = 1 there exists λ ∈ F∗qn
such that g(λ) = g ◦ τλ(1) = 0. Therefore, the set of all the elements of C
with 1-dimensional kernel is equal to the set

⋃

f∈U\{0}
〈f〉∗Fqn ,

where 〈f〉∗Fqn = {f ◦ τα : α ∈ F∗qn}. Hence,

An−1(C) = (qn − 1)
|U∗|
q − 1

,

where An−1(C) is the number of maps in C with rank n− 1. By evaluating
An−1 using (3) of Theorem 3.3 applied to C>, we get that

An−1(C) = (q
rn
2 − 1)

qn − 1

q − 1

and then |U∗| = q
rn
2 − 1, i.e. U is a maximum scattered subspace of C.

Now, let

G : g ∈ C 7→ g(1) ∈ V
(rn

2
, q
)
,

then kerG = U and

CU,G = {G ◦ τv : v ∈ V (r, qn)} = C.

Then the assertion follows.
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Hence we have the following correspondence.

Theorem 4.8. Let U be a scattered Fq-subspace with dimension rn/2 of the
r-dimensional Fqn-space V = V (r, qn), then the rank metric code CU,G (cf.
(6)) is an MRD-code of dimension rn, with parameters (rn/2, n, q;n − 1)
and with R(CU,G) = Fn ' Fqn . Conversely, if C is an Fq-linear MRD-code
with parameters (t, n, q;n− 1) with t ≥ n, R(C) ' Fqn and r = dimR(C) C,

then rn is even, t =
rn

2
and there exists a maximum scattered Fq-subspace

U of V (r, qn) such that the code CU,G defined in (6) is equal to C, for some
Fq-linear function G as above.

We will show an example of the above construction. Let r be odd and
n = 2t. Some of the known families of maximum scattered Fq-subspaces
are given in the r-dimensional Fq2t-space V = Fq2rt and they are of the
form

Uf := {xω + f(x) : x ∈ Fqrt}, (8)

with ω ∈ Fq2t \ Fqt such that ω2 = ωA0 + A1, A0, A1 ∈ Fqt and f is
an Fq-linear transformation of Fqrt . Then Construction (6) gives Fq-linear
MRD-codes with parameters (rt, 2t, q; 2t− 1). Indeed, in this case {ω, 1} is
an Fqt-basis of Fq2t and also an Fqrt-basis of Fq2rt , hence we can write any
element λ ∈ Fq2t as λ = xω + y, with x, y ∈ Fqt and any element v ∈ Fq2rt
as v = v0ω + v1 with v0, v1 ∈ Fqrt .
We fix G : Fq2rt → Fqrt as the map xω + y 7→ f(x) − y. For each v =
v0ω + v1 ∈ Fq2rt the map τv : Fq2t → Fq2rt is as follows:

λ = xω + y 7→ vλ = xv0A1 + yv1 + ω(xv1 + yv0 + xv0A0),

and τv can be viewed as a function defined on Fqt×Fqt . Then the associated
MRD-code consists of the maps Fv = G ◦ τv, i.e.

Fv : (x, y) ∈ Fqt × Fqt 7→ f(x(v1 + v0A0) + yv0)− xv0A1 − yv1.

For instance, put f(x) := axq
i

, a ∈ F∗qrt , 1 ≤ i ≤ rt − 1, r odd. For any
q ≥ 2 and any integer t ≥ 2 with gcd(t, r) = 1, such that

(i) gcd(i, 2t) = 1 and gcd(i, rt) = r,

(ii) Nqrt/qr (a) /∈ Fq,

from Section 2 (see [3, Theorem 2.2]), we get the Fq-linear MRD-code with
dimension 2rt and parameters (rt, 2t, q; 2t− 1):

{Fv : v = ωv0 + v1, v0, v1 ∈ Fqrt},
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where Fv : Fqt × Fqt → Fqrt is defined by the rule

Fv(x, y) = xq
i

a(Aq
i

0 v
qi

0 + vq
i

1 )− xA1v0 + yq
i

avq
i

0 − yv1. (9)

Note that, since gcd(i, rt) = r, the above MRD-code is Fqr -linear as well,
since for each µ ∈ Fqr and v ∈ Fq2rt we have µFv = Fµv. Hence its left
idealiser contains a subfield isomorphic to Fqr .

4.3 An alternative proof of Blokhuis-Lavrauw’s bound

The proof of Theorem 2.1 relies on the classical technique of double count-
ing. Here, by using the above methods (in particular the Singleton bound
(2)), we can give an alternative proof of this bound.

Proof. (Blokhuis-Lavrauw’s bound)
Let U be a scattered Fq-subspace of dimension k of V = V (r, qn), r ≥ 2.

Clearly, k ≤ rn− n, since |LU | =
qk − 1

q − 1
≤ qrn − 1

qn − 1
.

Consider W = V (rn− k, q) and

G : V →W

any surjective Fq-linear map with kerG = U . Consider the code

C = CU,G = {G ◦ τv : v ∈ V }.

The maps G ◦ τv of C are Fq-linear maps from Fqn to W = V (rn − k, q)
with kernel of dimension at most one. Indeed, µ ∈ ker(G ◦ τv) if and
only if G(µv) = 0, i.e. µv ∈ kerG = U ; hence dimFq ker(G ◦ τv) =
dimFq (U ∩ 〈v〉Fqn ) and dimFq (U ∩ 〈v〉Fqn ) ≤ 1 since U is scattered. Hence,
the rank of G ◦ τv is greater than or equal to n− 1, and so C is an Fq-linear
RM-code with parameters (rn−k, n, q;n−1) where rn−k ≥ n. Also, since
U is scattered, G ◦ τv and G ◦ τw are equal if and only if v = w and hence
| C | = qnr. Therefore, by the Singleton bound it follows that

nr ≤ 2(nr − k),

and hence k ≤ rn

2
, and the claim is proved.
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