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Designing progressive dinner parties
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Abstract: I recently came across a combinatorial design problem in-
volving progressive dinner parties (also known as safari suppers). In this
note, I provide some elementary methods of designing schedules for these
kinds of dinner parties.

1 The problem

A simple form of progressive dinner party could involve three couples eating
a three-course dinner, with each couple hosting one course. I received
email from Julian Regan asking if there was a nice way to design a more
complicated type of progressive dinner party, which he described as follows:

The event involves a number of couples having each course of
a three-course meal at a different person’s house, with three
couples at each course, every couple hosting once and no two
couples meeting more than once.

Let us represent each couple by a point x ∈ X and each course of each
meal by a block consisting of three points. Suppose there are v points (i.e.,
couples). Evidently we want a collection of blocks of size three, say B, such
that the following conditions are satisfied:
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1. The blocks can be partitioned into three parallel classes, each con-
sisting of v/3 disjoint blocks. (Each parallel class corresponds to a
specific course of the meal.) Hence, there are a total of v blocks and
we require v ≡ 0 mod 3.

2. No pair of points occurs in more than one block.

3. There is a bijection h : B → X such that h(B) ∈ B for all B ∈ B.
(That is, we can identify a host for each block in such a way that each
point occurs as a host exactly once.)

We will refer to such a collection of blocks as a PDP(v).

It is not hard to see that a PDP(v) does not exist if v = 3 or v = 6, because
we cannot satisfy condition 2. However, for all larger values of v divisible
by three, we show in Section 2 that it is possible to construct a PDP(v).
Section 3 considers a generalization of the problem in which there are k
courses and k couples present at each course, and gives a complete solution
when k = 4 or k = 5.

2 Two solutions

We begin with a simple construction based on latin squares. A latin square
of order n is an n by n array of n symbols, such that each symbol occurs
in exactly one cell in each row and each column of the array. A transversal
of a latin square of order n is a set of n cells, one from each row and each
column, that contain n different symbols. Two transversals are disjoint if
they do not contain any common cells.

Lemma 2.1. Suppose there is a latin square of order w that contains three
disjoint transversals. Then there is a PDP(3w).

Proof. Let L be a latin square of order w that contains disjoint transversals
T1, T2 and T3. Let the rows of L be indexed by R, let the columns be indexed
by C and let the symbols be indexed by S. We assume that R, C and S
are three mutually disjoint sets. Each transversal Ti consists of w ordered
pairs in R× C.

We will construct a PDP(3w) on points X = R ∪C ∪ S. For 1 ≤ i ≤ 3, we
construct a parallel class Pi as follows:

Pi = {{r, c, L(r, c)} : (r, c) ∈ Ti}.
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Finally, for any block B = {r, c, s} ∈ P1∪P2∪P3, we define h(B) as follows:

• if B ∈ P1, then h(B) = r

• if B ∈ P2, then h(B) = c

• if B ∈ P3, then h(B) = s.

The verifications are straightforward.

• First, because each Ti is a transversal, it is clear that each Pi is a
parallel class.

• No pair of points {r, c} occurs in more than one block because the
three transversals are disjoint.

• Suppose a pair of points {r, s} occurs in more than one block. Then
there is L(r, c) ∈ Ti and L(r, c′) ∈ Tj such that L(r, c) = L(r, c′). Ti

and Tj are disjoint, so c 6= c′. But then we have two occurrences of
the same symbol in row r of L, which contradicts the assumption that
L is a latin square.

• The argument that no pair of points {c, s} occurs in more than one
block is similar.

• Finally, the mapping h satisfies property 3 because each Ti is a
transversal.

Theorem 2.2. There is a PDP(3w) for all w ≥ 3.

Proof. If ≥ 3, w 6= 6, there is a pair of orthogonal latin squares of order
w. It is well-known that a pair of orthogonal latin squares of order w is
equivalent to a latin square of order w that contains w disjoint transversals
(see, e.g., [3, p. 162]). Since w ≥ 3, we have three disjoint transversals and
we can apply Lemma 2.1 to obtain a PDP(w). There do not exist a pair
of orthogonal latin squares of order 6, but there is a latin square of order
6 that contains four disjoint transversals (see, e.g., [3, p. 193]). So we can
also use Lemma 2.1 to construct a PDP(18).
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Example 2.1. We construct a PDP(12). Start with a pair of orthogonal
latin squares of order 4:

L1 =

1 3 4 2
4 2 1 3
2 4 3 1
3 1 2 4

, L2 =

1 4 2 3
3 2 4 1
4 1 3 2
2 3 1 4

.

Each symbol in L2 gives us a transversal in L1. Suppose we index the rows
by ri (1 ≤ i ≤ 4) and the columns by cj (1 ≤ j ≤ 4). From symbols 1, 2
and 3, we obtain the following three disjoint transversals in L1:

T1 = {(r1, c1), (r2, c4), (r3, c2), (r4, c3)}
T2 = {(r1, c3), (r2, c2), (r3, c4), (r4, c1)}
T3 = {(r1, c4), (r2, c1), (r3, c3), (r4, c2)}.

Suppose we relabel the points as 1, . . . 12, replacing r1, . . . , r4 by 1, . . . , 4; re-
placing c1, . . . , c4 by 5, . . . , 8; and replacing the symbols 1, . . . , 4 by 9, . . . , 12.
Then we obtain the following PDP(12), where the hosts are indicated in red:

P1 = {{1, 5, 9}, {2, 8, 11}, {3, 6, 12}, {4, 7, 10}}
P2 = {{1, 7, 12}, {2, 6, 10}, {3, 8, 9}, {4, 5, 11}}
P3 = {{1, 8, 10}, {2, 5, 12}, {3, 7, 11}, {4, 6, 9}}.

Of course, using a pair of latin squares is overkill. It would perhaps be
easier just to give explicit formulas to construct a PDP. Here is one simple
solution that works for all v ≥ 9 such that v ≡ 0 mod 3 and v 6= 12.

Theorem 2.3. Let w ≥ 3, w 6= 4, and let X = Zw × {0, 1, 2}. Define the
following three parallel classes:

P0 = {{(0, 0), (0, 1), (0, 2)} mod w}
P1 = {{(0, 0), (1, 1), (2, 2)} mod w}
P2 = {{(0, 0), (2, 1), (4, 2)} mod w}.

For any block B = {(i, 0), (j, 1), (k, 2)} ∈ P0 ∪ P1 ∪ P2, define h(B) as
follows.

• if B ∈ P0, then h(B) = (i, 0)

• if B ∈ P1, then h(B) = (j, 1)

• if B ∈ P2, then h(B) = (k, 2).

Then P0, P1, P2, and h yield a PDP(3w).
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Proof. It is clear that each Pi is a parallel class because we are developing
a base block modulo w and each base block contains one point with each
possible second coordinate. For the same reason, the mapping h satisfies
property 3.

Consider the differences (y − x) mod w that occur between pairs of points
{(x, 0), (y, 1)}. We obtain all pairs with differences 0, 1 and 2 when we
develop the three base blocks. The same thing happens when we look at
the differences (y − x) mod w between pairs of points {(x, 1), (y, 2)}.

Finally, consider the differences (y− x) mod w that occur between pairs of
points {(x, 0), (y, 2)}. We obtain all pairs with differences 0, 2 and 4 modulo
w when we develop the three base blocks. Since w 6= 4, these differences
are distinct and the pairs obtained by developing the base blocks are also
distinct.

If w = 4, then the construction given in Theorem 2.3 does not yield a
PDP(12), because various pairs occur in more than one block. For example,
the pair {(0, 0), (0, 2)} occurs in a block of P0 as well as in a block of P2.

Example 2.2. We apply Theorem 2.3 with w = 5. The three parallel
classes, with hosts in red, are:

P0 P1 P2

{(0, 0), (0, 1), (0, 2)} {(0, 0), (1, 1), (2, 2)} {(0, 0), (2, 1), (4, 2)}
{(1, 0), (1, 1), (1, 2)} {(1, 0), (2, 1), (3, 2)} {(1, 0), (3, 1), (0, 2)}
{(2, 0), (2, 1), (2, 2)} {(2, 0), (3, 1), (4, 2)} {(2, 0), (4, 1), (1, 2)}
{(3, 0), (3, 1), (3, 2)} {(3, 0), (4, 1), (0, 2)} {(3, 0), (0, 1), (2, 2)}
{(4, 0), (4, 1), (4, 2)} {(4, 0), (0, 1), (1, 2)} {(4, 0), (1, 1), (3, 2)}

2.1 Finding hosts

The specific constructions that we provided in Section 2 led to a very simple
method to identify hosts. However, no matter what collection of three
parallel classes we use, it will be possible to define hosts in such a way that
property 3 of a PDP will be satisfied.

Theorem 2.4. Suppose that P1, P2 and P3 are three parallel classes of
blocks of size three, containing points from a set X of size v ≡ 0 mod 3.
Then we can define a mapping h that satisfies property 3.
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Proof. Construct the bipartite point-block incidence graph of the design.
The nodes in this graph are all the elements of X ∪ B. For x ∈ X and
B ∈ B, we create an edge from x to B if and only if x ∈ B. The resulting
graph is a 3-regular bipartite graph and hence it has a perfect matching
M (this is a corollary of Hall’s Theorem, e.g., see [2, Corollary 16.6]). For
every B ∈ B, define h(B) = x, where x is the point matched with B in the
matching M .

The following corollary is immediate.

Corollary 2.5. Suppose that P1, P2 and P3 are three parallel classes of
blocks of size three, containing points from a set X of size v ≡ 0 mod 3.
Suppose also that no pair of points occurs in more one block in B = P1 ∪
P2 ∪ P3. Then there is a PDP(v).

3 A generalization

Suppose we now consider a generalization where meals have k courses and
each course includes k couples. We define a PDP(k, v) to be a set of blocks
of size k, defined on a set of v points, which satisfies the following properties:

1. The blocks can be partitioned into k parallel classes, each consisting
of v/k disjoint blocks. Hence, there are a total of v blocks and we
require v ≡ 0 mod k.

2. No pair of points occurs in more than one block.

3. There is a bijection h : B → X such that h(B) ∈ B for all B ∈ B.

The problem we considered in Section 1 was just the special case k = 3 of
this general definition.

Here is a simple necessary condition for existence of a PDP(k, v).

Lemma 3.1. If a PDP(k, v) exists, then v ≥ k2.

Proof. A given point x occurs in k blocks, each having size k. The points
in these blocks (excluding x) must be distinct. Therefore,

v ≥ k(k − 1) + 1 = k2 − (k − 1).

Since k divides v, we must have v ≥ k2.
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We have the following results that are straightforward generalizations of our
results from Section 2. The first three of these results are stated without
proof.

Lemma 3.2. Suppose there are k − 2 orthogonal latin squares of order w
that contain k disjoint common transversals. Then there is a PDP(k, kw).

Corollary 3.3. Suppose there are k − 1 orthogonal latin squares of order
w. Then there is a PDP(k, kw).

Theorem 3.4. Suppose that P1, . . . , Pk are k parallel classes of blocks of
size k, containing points from a set X of size v ≡ 0 mod k. Then we can
define a mapping h that satisfies property 3.

Our last construction generalizes Theorem 2.3.

Theorem 3.5. Let w ≥ k ≥ 3. Suppose that the following condition holds:

There is no factorization w = st with 2 ≤ s ≤ k − 1 and 2 ≤ t ≤ k − 1.
(1)

Then there is a PDP(k, kw).

Proof. Define X = Zw × {0, . . . , k − 1} and define the following k parallel
classes, P0, . . . , Pk−1:

Pi = {{(0, 0), (i, 1), (2i, 2), . . . , ((k − 1)i, k − 1)} mod w},

for i = 0, . . . , k−1. Finally, define the mapping h as follows. For any block
B ∈ P`, define h(B) = (x, `), where (x, `) is the unique point in B having
second coordinate equal to `. Then P0, . . . , Pk−1 and h yield a PDP(k, kw).

Most of the verifications are straightforward, but it would perhaps be useful
to see how condition (1) arises. Consider the differences (y−x) mod w that
occur between pairs of points {(x, c), (y, c + d)}, where c and d are fixed,
0 ≤ c ≤ k − 2, 1 ≤ d ≤ k − c− 1. These difference are

0, d, 2d, . . . , (k − 1)d mod w,

where 0 < d ≤ k − 1. We want all of these differences to be distinct.
Suppose that

id ≡ jd mod w

where 0 ≤ j < i ≤ k − 1. Then

(i− j)d ≡ 0 mod w.
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Hence,
ed ≡ 0 mod w

where 0 < e ≤ k − 1 and 0 < d ≤ k − 1. Then, it not hard to see that w
can be factored as the product of two positive integers, both of which are
at most k − 1.

Conversely, suppose such a factorization exists, say w = st. Then the pair
{(0, 0), (0, t)} occurs in a block in P0 and again in a block in Ps.

Observe that condition (1) of Theorem 3.5 holds if w is prime or if w >
(k − 1)2. Therefore we have the following corollary of Theorem 3.5.

Corollary 3.6. Let w ≥ k ≥ 3. Suppose that w is prime or w > (k − 1)2.
Then there is a PDP(k, kw).

In general, some values of w will be ruled out (in the sense that Theorem
3.5 cannot be applied) for a given value of k. For example, as we have
already seen in the previous section, we cannot take w = 4 in Theorem 3.5
if k = 3. However, a PDP(12) was constructed by a different method in
Example 2.1.

We have the following complete results for k = 4 and k = 5.

Theorem 3.7. There is a PDP(4, 4w) if and only if w ≥ 4. Further, there
is a PDP(5, 5w) if and only if w ≥ 5.

Proof. For k = 4, we proceed as follows. Theorem 3.5 yields a PDP(4, 4w)
for all w ≥ 4, w 6= 4, 6, 9. Theorem 3.3 provides a PDP(4, 16) and a
PDP(4, 36) since three orthogonal latin squares of orders 4 and 9 are known
to exist (see [3]). The last case to consider is w = 6. Here we can use a
resolvable 4-GDD of type 38 ([4]). Actually, we only need four of the seven
parallel classes in this design. Then, to define the hosts, we can use Theorem
3.4.

We handle k = 5 in a similar manner. Theorem 3.5 yields a PDP(5, 5w)
for all w ≥ 5, w 6= 6, 8, 9, 12 or 16. There are four orthogonal latin squares
of orders 8, 9, 12 and 16 (see [3]) so these values of w are taken care of by
Theorem 3.3.

Finally, the value w = 6 is handled by a direct construction due to Marco
Buratti [1]. Define X = Z30 and

B = {{0, 1, 8, 12, 14} mod 30}.
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So we have thirty blocks that are obtained from the base block B0 =
{0, 1, 8, 12, 14}. It is easy to check that no pair of points is repeated, be-
cause the differences of pairs of points occurring in B0 are all those in the
set

±{1, 2, 4, 6, 7, 8, 11, 12, 13, 14}.

Define
P0 = {B0 + 5j mod 30 : j = 0, 1, . . . , 5}

and for 1 ≤ i ≤ 4, let

Pi = {B + i mod 30 : B ∈ P0}.

In this way, B is partitioned into five parallel classes, each containing six
blocks.

Theorem 3.4 guarantees that we can define hosts in a suitable fashion.
However, it is easy to write down an explicit formula, namely, h(B0 + i) = i
for 0 ≤ i ≤ 29.
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