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Abstract

Quaternary unit Hadamard (QUH) matrices were introduced by
Fender, Kharaghani and Suda along with a method to construct
them at prime power orders. We present a novel construction of real
Hadamard matrices from QUH matrices. Our construction recovers
the result by Mukhopadhyay on the existence of real Hadamard ma-
trices of order qn + qn−1 for each prime power q ≡ 3 mod 4, and
n ≥ 1. Furthermore we provide nonexistence conditions for QUH
matrices.

1 Introduction

A celebrated theorem of Hadamard characterises the complex matrices with
entries of norm at most one which have maximal determinant: they are
precisely the solutions to the matrix equation HH∗ = nIn satisfying |hij | =
1 for all 1 ≤ i, j ≤ n. Equivalently, all entries of H have unit norm, and all
rows are mutually orthogonal under the Hermitian inner product, [7]. Real
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Hadamard matrices, having entries in {±1}, have been extensively studied
for a century, though the existence problem is far from settled. We refer
the reader to the recent monographs of Horadam and of de Launey and
Flannery for extensive discussion of Hadamard matrices, [8, 3].

In this paper we will study the problem of constructing real Hadamard
matrices from complex Hadamard matrices (CHM). Suppose that X is a
set of complex numbers of modulus 1. We define H(n,X) to be the set of
n × n Hadamard matrices with entries drawn from X. In the special case
that X is the set of kth roots of unity, a CHM is called a Butson Hadamard
matrix ; the set of such matrices is denoted BH(n, k). Examples of Butson
Hadamard matrices are furnished by the character tables of abelian groups
of order n and exponent k. Cohn and Turyn proved independently that the
existence of H ∈ BH(n, 4) implies the existence of a real Hadamard matrix
of order 2n, [1, 14]. More recently, Compton, Craigen and de Launey
proved that an n× n matrix with entries in the unreal sixth roots of unity
{ω6, ω

2
6 , ω

4
6 , ω

5
6} can be used to construct a real Hadamard matrix of order

4n, [2].

A general construction for mappings between sets of Butson Hadamard ma-
trices is described by Egan and one of the present authors, [4]. A key ingre-
dient in the construction is a matrixH ∈ BH(n, k) with minimal polynomial
Φt(x) for some integer t. The construction of such matrices was considered
further in collaboration with Eric Swartz, [5]. In all the examples considered
previously, matrix entries are roots of unity, and all fields considered are
cyclotomic. In this paper, we consider a family of complex Hadamard ma-
trices with entries in the biquadratic extension Q[

√−q,√q + 1]. When the

matrix entries are all in the set Xq = {±1±
√−q√
q+1

}, such a matrix is called a

Quaternary Unit Hadamard matrix, abbreviated QUH. Such matrices were
first considered by Fender, Kharaghani and Suda, [6].

We will construct a morphism from QUH matrices onto real Hadamard
matrices, using skew-Hadamard matrices. This provides a new construction
for a family of Hadamard matrices of order qn + qn−1 for each prime power
q ≡ 3 mod 4 and each n ≥ 1, previously constructed by Mukhopadhyay
and studied further by Seberry, [12, 13]. We conclude the paper by studying
the decomposition of prime ideals in the field Q[

√−q,√q + 1] to obtain
non-existence results for QUH matrices in the style of Winterhof [15].
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2 Morphisms of QUH matrices

In this section we construct an isomorphism of fields, which we lift to an
isomorphism of matrix algebras. We prove that this isomorphism carries
a QUH matrix in the set H(n,Xm) to a real Hadamard matrix of order
n(m + 1); that is, the isomorphism is a morphism of complex Hadamard
matrices. We will require some standard results in algebra, as discussed in,
e.g., Chapters 17–19 of Isaacs’ Graduate Algebra, [10]. An extension field k
of Q is a field containing Q as a subfield; in this case k is a Q-vector space
and its degree is its dimension as a vector space. The degree of k over Q
is denoted by [k : Q]. In the ring Q[x] every ideal contains a unique monic
polynomial of minimal degree, this polynomial is irreducible if and only if
the ideal is maximal. For a polynomial p(x) the quotient Q[x]/ (p(x)) is a
field if and only if the polynomial p(x) is irreducible. An extension field k
is the splitting field of a polynomial p(x) ∈ Q[x] if k is a field of minimal
degree over Q which contains all the roots of p(x). We apply these results

to the polynomial m(x) = x4 + 2(m−1)
m+1 x2 + 1. By abuse of notation, a

Hadamard matrix is skew if H − I is a skew-symmetric matrix.

Proposition 2.1. Let H be a skew-Hadamard matrix of order m+1, where

m + 1 is not a perfect square. The minimal polynomial of αm = 1+
√−m√
m+1

and the minimal polynomial of 1√
m+1

H are both equal to

m(x) = x4 +
2(m− 1)

m+ 1
x2 + 1 .

Proof. It is easily checked that αm is a root of m(x). Since m(x) is even,
−αm is also a root. The coefficients of m(x) are real, thus α∗m and −α∗m are
roots. From the fact that m(x) has degree 4, we conclude that these are all
the possible roots. Therefore we obtain the factorisation

m(x) = (x− αm)(x− α∗m)(x+ αm)(x+ α∗m) .

Clearly m(x) has no linear factors in Q[x]. The only possible quadratic
factors with real entries are (x− αm)(x− α∗m) = x2 − 2x/

√
m+ 1 + 1 and

(x + αm)(x + α∗m) = x2 + 2x/
√
m+ 1 + 1. By hypothesis, m + 1 is not a

perfect square so these factors are not in Q[x]. We have shown that m(x)
is irreducible. The field extension Q[αm] contains α−1 = α∗m and −αm, so
it is the splitting field of m(x).

Since H is skew-Hadamard we have both HH> = (m+ 1)Im+1 and H> =
2I −H. It follows that H(2I −H) = (m + 1)I, or H2 = 2H − (m + 1)I.
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Hence, (
1√
m+ 1

H

)2

=
2

m+ 1
H − I .

We also compute that
(

1√
m+ 1

H

)4

=
4

(m+ 1)

(
1√
m+ 1

H

)2

− 4

m+ 1
H + I

=
4

(m+ 1)

(
1√
m+ 1

H

)2

− 2

(
2

m+ 1
H − I

)
− I

=
4

(m+ 1)

(
1√
m+ 1

H

)2

− 2

(
1√
m+ 1

H

)2

− I

=
2− 2m

m+ 1

(
1√
m+ 1

H

)2

− I

We conclude that the unitary matrix 1√
m+1

H is a root of polynomial m(x),

which must be the minimal polynomial of 1√
m+1

H by irreducibility.

When m+ 1 is a perfect square, the polynomial m(x) factors into two irre-
ducible quadratic factors in Q[x], which correspond to the distinct minimal
polynomials of αm and −αm. In this case, the minimal polynomials of
αm and 1√

m+1
H coincide, and also the minimal polynomials of −αm and

1√
m+1

(H − 2I) coincide. The case that m + 1 is a perfect square will be

discussed after the proof of Theorem 2.4. From Proposition 2.1, the next
result is immediate.

Proposition 2.2. If H is a skew-Hadamard matrix of order m, then all of
the following Q-algebras are isomorphic:

Q[x]/(m(x)) ' Q
[

1√
m+ 1

H

]
' Q[αm]. (1)

Definition 2.3. A Quaternary Unit Hadamard (QUH) matrix is an ele-
ment of H(n,Xm), where

Xm =

{±1±√−m√
m+ 1

}
.

Now we give the main result of this section.

Theorem 2.4. If there exists a skew-Hadamard matrix H of order m+ 1,
where m+ 1 is not a perfect square, there exists a morphism

H(n,Xm)→ BH(nm+ n, 2).

Skew Hadamard Matrices

53



Proof. Assume that there exists M ∈ H(n,Xm), since otherwise the claim
is vacuous. By Proposition 2.2 that there exists an isomorphism Q(αm)→
Q( 1√

m+1
H). We make this explicit:

ϕ : αm 7→
1√
m+ 1

H

and since αm is a generator of Q(αm) the function ϕ extends uniquely to
the whole field. Recalling that H is skew, we obtain

ϕ(−αm) =
−1√
m+ 1

H =
1√
m+ 1

(H − 2I)>, ϕ(α∗m) =
1√
m+ 1

H> .

Define Mϕ to be the block matrix obtained from M by applying ϕ entry-
wise. Then Mϕ is a real matrix of size n(m+ 1)×n(m+ 1) with entries in
the set {±1/

√
m+ 1}. Since M ∈ H(n,Xm) the (Hermitian) inner prod-

uct of columns ci and cj of M is 〈ci, cj〉 = nδji , where δji is the Kronecker
δ function. Since ϕ is an isomorphism of Q-algebras, ϕ(0) = 0m+1 and
ϕ(1) = Im+1. It follows that

∑

k

ϕ(ci,k)ϕ(cj,k)> =
∑

k

ϕ(ci,k)ϕ(c∗j,k)

= ϕ

(∑

k

ci,kc
∗
j,k

)

= ϕ(〈ci, cj〉)
= nδji Im+1 .

This shows that Mϕ (Mϕ)
>

= nIn(m+1). The entries of Mϕ are in the set

{±1/
√
m+ 1}, so the entries of

√
m+ 1Mϕ are in the set {±1}. We have

shown that
√
m+ 1Mϕ

(√
m+ 1Mϕ

)>
= n(m+ 1)In(m+1) ,

which establishes the theorem.

A less technical method to prove the above theorem without assumptions
on m+ 1 is as follows: Let H ∈ H(n,Xm), and let

H =
1√
m+ 1

A+

√−m√
m+ 1

B,

where A and B are ±1 matrices of order n. Then

AB> = BA> and AA> +BB> = n(m+ 1)In.
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Let M be a skew Hadamard matrix of order m+ 1. Substituting A for the
diagonal entries of M and ±B for the off-diagonal entries ±1 of M , it can
be verified that the resulting matrix will be a Hadamard matrix of order
n(m + 1). Although this proof is simpler than that of Theorem 2.4, the
morphism method gives additional insights into existence and non-existence
of QUH matrices, as demonstrated in Section 3.

Let q be an odd prime power and Fq be a finite field with q elements.
The element a ∈ Fq is a quadratic residue if there exists y ∈ Fq such
that y2 = a. Otherwise, a is a non-residue. The quadratic character is
defined to be χq(a) = 1 if a ∈ F∗q = Fq − {0} is a quadratic residue in Fq,
χq(a) = −1 if a ∈ F∗q is a quadratic non-residue in Fq and χq(0) = 0. In
the case where q = p is a prime number, the quadratic character χp(a) on
Fp ' Z/pZ can be identified with the Legendre symbol and is denoted (a/p).
Later we will use the fact that for a fixed prime p and for every a, b ∈ Z,
(ab/p) = (a/p) (b/p), [9, Proposition 5.1.2]. Let {g0 = 0, g1, . . . , gq−1} be an
enumeration of Fq then Q = [χq(gi − gj)]0≤i,j≤q−1 is the Jacobsthal matrix
of order q.

Theorem 2.5 (Section 3, [6]). Let q be an odd prime power with q ≡ 3
(mod 4). Define 1× 1 matrices A0 = B0 = 1, let Q be the q × q Jacobsthal
matrix and Jq the q × q all-ones matrix. For each t ≥ 1, define

At = Jq ⊗Bt−1, Bt = Iq ⊗At−1 +Q⊗Bt−1 .

Then for each t the matrix 1√
q+1

At + i
√
q√
q+1

Bt is a matrix in H(qt, Xq).

Hence there exist H(qt, Xq) matrices for all prime powers q ≡ 3 mod 4.
Since the Paley matrix of order q+ 1 is skew, we can apply Theorem 2.4 to
obtain the following result.

Corollary 2.6. Let q ≡ 3 mod 4 be a prime power. For any integer n ≥ 1
there exists a (real) Hadamard matrix of order qn + qn−1.

This result was first discovered by Mukhopadhyay, and later clarified and
elaborated by Seberry, [12, 13]. Of course, it would be interesting to develop
constructions of Hadamard matrices at previously unknown orders. As a
first contribution in this direction, we investigate the non-existence of QUH
matrices in the next section.
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3 Nonexistence of quaternary unit
Hadamard matrices

The Galois group of an irreducible polynomial p(x) is the group of field
automorphisms of a splitting field of p(x). Over Q, the order of the Galois
group and the degree of the splitting field coincide. The Galois correspon-
dence gives an inclusion-reversing bijection between the lattice of subfields
of Q[x]/ (p(x)) and the subgroups of the Galois group.

An element x ∈ C is an algebraic integer if it is a root of a monic polyno-
mial in Z[x]. The ring of integers of a number field k ⊆ C is the largest
subring of the algebraic integers contained in k, usually denoted Ok. In the
ring of integers of a number field, ideals factorise uniquely as a product of
prime ideals, [11, Theorem 14]. Studying prime factorisations related to the
determinant of a putative complex Hadamard matrix can sometimes yield
nonexistence results. This argument is similar to one given by Winterhof
for certain Butson Hadamard matrices, [15].

First, we introduce terminology for the factorisation of a prime ideal of Z
in Ok for a number field k. As is customary we will denote prime ideals in
k by the gothic letters p and q and rational primes by p and q.

Definition 3.1. Let k be the splitting field of an irreducible polynomial,
and q be a rational prime.

• q is inert in Ok if (q) is a prime ideal in Ok.

• If q is not inert then it splits in Ok. Let (q) =
∏

qei be the prime ideal
decomposition of (q). If e ≥ 1 then q is ramified, otherwise it splits
completely.

The discriminant of a number field is an integer valued invariant that con-
trols the factorisation of rational primes in that field. The following result
is a special case of a more general result on the splitting of rational primes
on number fields, see Theorems 21, 23 and 24 of Marcus’ Number Fields
for details, [11].
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56



Theorem 3.2. Let k be a number field. If a rational prime q is ramified
in Ok, then q | disc(k). Let k be the splitting field of some irreducible
polynomial, where the degree of k over Q is n = [k : Q]. If q is a rational
prime such that q - disc(k), then

(q) = q1 . . . qr,

where r|n. Furthermore the action of the Galois group on {q1, . . . , qr} is
transitive.

In a quadratic extension of Q, the Legendre symbol controls the splitting
of prime ideals.

Theorem 3.3 (p.24, Theorem 25, [11]). Let k = Q[
√
d] where d is a square-

free integer. Then disc(k) = d if d ≡ 1 mod 4 and disc(k) = 4d if d ≡ 2, 3
mod 4. Suppose that q is an odd rational prime and q - disc(k). Then

• q is inert in Ok if (d/q) = −1.

• q splits into distinct prime ideals in Ok if (d/q) = 1.

We will study these concepts for the field K = Q[α], which by Proposi-
tion 2.1 is the splitting field of m(x). Since 2/(αm + α∗m) =

√
m+ 1 and

(
√
m+ 1)αm−1 =

√−m we have isomorphism Q[αm] ' Q[
√−m,

√
m+ 1].

There are three intermediate subfields of K, as illustrated.

K = Q
[√
m+ 1,

√−m
]

K2 = Q
[√
m+ 1

]
K1 = Q

[√−m
]

K3 = Q
[√
−m(m+ 1)

]

Q

The lattice of subfields of K.

The discriminant of a biquadratic extension is given as an exercise by Mar-
cus.
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Proposition 3.4 (p.36-37, [11]). The discriminant of a biquadratic exten-
sion k = Q[

√
a,
√
b] where gcd(a, b) = 1 is

disc(k) = disc(k1)disc(k2)disc(k3),

where k1 = Q[
√
a], k2 = Q[

√
b] and k3 = Q[

√
ab].

Let G = Gal(K/Q) be the Galois group the splitting field of m(x). By the
Galois correspondence G has order 4, and has three distinct subgroups of
order 2. So G is elementary abelian, generated by σ :

√
m+ 1 7→ −

√
m+ 1

and τ :
√−m 7→ −√−m. We identify τ with complex conjugation. Note

that K1 = Fix(σ) is the fixed field of σ, that K2 = Fix(τ) is the fixed field
of τ and K3 = Fix(στ) is the fixed field of στ .

From now on, let m = p be a prime congruent to 3 modulo 4, and write
s for the squarefree part of p + 1. Then K ' Q[

√−p,√s], and applying
Proposition 3.4 we have

disc(K) =

{
s2p2 if s ≡ 1 mod 4

16s2p2 if s ≡ 2, 3 mod 4
.

Let q be a prime number. By Theorem 3.2, the prime q ramifies in OK
only if q = p or q|s. Next we describe which non-ramified primes split in
OK .

Proposition 3.5. Let q be a rational prime not dividing disc(k). Then one
of the following holds:

• (q) = q1q2q3q4 in OK and q splits in every subfield of K.

• (q) = q1q2 in OK and q splits in one proper subfield of K, being inert
in the other two.

Proof. By Theorem 3.3, the prime q splits in K1 if and only if (−p/q) = 1,
and q splits in K2 if and only if (s/q) = 1. Suppose that (−p/q) = (s/q) =
−1. Then (−ps/q) = (−p/q) (s/q) = 1, so q splits in K3. We conclude that
no rational prime is inert in K.

Since by assumption q does not ramify, Theorem 3.2 tells us that q splits
in OK into two or four prime ideals. Suppose that (q) = q1q2q3q4. Then
up to a relabeling of the primes qi we can assume that
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58



qσ1 = q2, qσ3 = q4
qτ1 = q3, qτ2 = q4
qστ1 = q4, qστ2 = q3

This implies that (q1q2)σ = q1q2 and (q3q4)σ = q3q4, therefore q1q2
and q3q4 are ideals in the fixed field K1 of σ and thus q splits as (q) =
(q1q2)(q3q4) in K1. We can show analogously that q splits in K2 and K3.
Suppose next that q splits in K as q1q2. Then the Galois group acts as in
one of the following possibilities.

qσ1 qτ1 qστ1 Subfield containing q1 and q2
q1 q2 q2 K1 = Fix(σ)
q2 q1 q2 K2 = Fix(τ)
q2 q2 q1 K3 = Fix(στ)

In each case, there is exactly one non-identity element g ∈ G fixing both
q1 and q2. So q splits in the fixed field of g, and is inert in the other two
intermediate subfields.

In our application to QUH matrices, we will require the following special
case of Proposition 3.5.

Corollary 3.6. Let q be an odd rational prime q, coprime to both p and
s. In OK , we have (q) = q1q2 with qτ1 = q1 and qτ2 = q2 if and only if
(−p/q) = −1 and (s/q) = 1.

Proof. Since qτ1 = q1 it must be the case that qσ1 = q2 and, by Proposition
3.5, q splits in K2 as q1q2. So by Theorem 3.3, we must have (s/q) = 1.
Furthermore, (q) must be inert in K1, from which we obtain (−p/q) = −1 as
required. The converse follows from Theorem 3.3 and Proposition 3.5.

Recall that the action of τ on K corresponds to the action of complex
conjugation on K. Therefore the case above is equivalent to (q) = q1q2
with q∗1 = q1 and q∗2 = q2. We can now formulate our main nonexistence
theorem.
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Theorem 3.7. Let n be an odd integer, with squarefree part t. Let p ≡ 3
mod 4 be a prime number such that the squarefree part of p+ 1 is s > 1. If
there exists an odd prime q such that

• q divides t,

• (s/q) = 1, and

• (−p/q) = −1,

then H(n,Xp) is empty.

Proof. Let M ∈ H(n,Xp) and set D = (p+1)n detM . Then D ∈ OK , since
(p + 1)α ∈ OK for every α ∈ Xp. The matrix H is complex Hadamard,
therefore DD∗ = (p + 1)2nnn = a2tn, for some a ∈ Z. By Corollary 3.6,
(q) = q1q2 in OK with q1 = q∗1. We have that q|t, so since n is odd the prime
ideal q1 appears with odd multiplicity in the decomposition of (p+ 1)2nnn

in OK . Since q1 is prime and divides the product (D)(D∗), it divides one
of the factors; without loss of generality, suppose that q1 divides (D). So
(D) factors into prime ideals uniquely as

(D) = q`1
∏

j

p
`j
j ,

Then (D∗) = (D)∗ = q`1
∏
j(p
∗
j )
`j . But implies that q1 appears with even

multiplicity in (D)(D∗), contradicting its odd multiplicity in (p + 1)2nnn.

The only prime of the form n2 − 1 is 3. In this case the matrices H(n,X3)
coincide with the unreal BH(n, 6) matrices of Compton, Craigen and de
Launey. The set H(n,X3) is empty if there exists a prime q ≡ 5 (mod 6)
which divides the square-free part of n (see Theorem 2 of [2] or Theorem 5
of [15] for a proof).

We conclude this paper by discussing some consequences of Theorem 3.7.
Suppose first that p = 7. Then a prime q satisfying both (q/7) = −1 and
(2/q) = 1 cannot divide the square-free part of n. By quadratic reciprocity,
these are the primes which satisfy both q ≡ 3, 5, 6 mod 7 and q ≡ 1, 7
mod 8. By Dirichlet’s Theorem on primes in arithmetic progressions, there
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are infinitely many such primes. Similar results hold for each prime p, as
illustrated in the table below.

p n
7 17, 31, 41, 47, 51, 73, 85, 89, 93, 97, 103, 119, 123, 141, . . .
11 13, 39, 61, 65, 73, 83, 91, 107, 109, 117, 131, 143, 167, . . .
19 29, 31, 41, 59, 71, 79, 87, 89, 93, 109, 123, 145, 151, . . .
23 5, 15, 19, 35, 43, 45, 53, 55, 57, 65, 67, 85, 95, 97, 105, . . .
31 17, 23, 51, 69, 73, 79, 85, 89, 115, 119, 127, 137, 151, . . .
43 5, 7, 15, 19, 21, 35, 37, 45, 55, 57, 63, 65, 77, 85, 89, 91, . . .

Pairs (n, p) such that H(n, p) is empty.

In fact, it is a consequence of the Chebotarev Density Theorem that the
proportion of primes q ≤ N to which the conditions of Theorem 3.7 apply
tends to 1/4 as N tends to infinity. In particular, there are infinitely many
primes which obstruct the existence of matrices in H(n,Xp) for any fixed
p.

To illustrate Theorem 3.7 in a case where not all ideals are principal, we
consider p = 43 and q = 5, then s = 11. We have (5/43) = −1, thus the
prime 5 should be inert in OK1

. By Proposition 3.5, (5) splits in OK as the
product of two prime ideals in OK2

, indeed (5) = (5, 1+
√

11)(5, 1−
√

11) in
OK . If there exists H ∈ H(5, X43) then D = 115 detH and DD∗ = 1110 ·55.
Thus in OK this means

(D)(D)∗ = (115)2(5, 1 +
√

11)5(5, 1−
√

11)5.

The ideal (5, 1+
√

11) = (5, 1+
√

11)∗ appears with even multiplicity on the
left hand side and odd multiplicity on the right hand side. Hence H(5, X43)
is empty.

Acknowledgements

This research was completed while JP and PH were undergraduates and
GNP was a doctoral student at Worcester Polytechnic Institute. JP was
supported by a Student Undergraduate Research Fellowship sponsored by
the office of the Dean of Arts and Sciences. PH and GNP were supported
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