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Matrix approaches to constructions of group
divisible designs

Shyam Saurabh∗ and Kishore Sinha

Abstract. Saurabh and Sinha [30] obtained some series of L2-type Latin
square designs using certain combinatorial matrices. These constructions
cover all the L2-type Latin square designs listed in Clatworthy [6] except
one. Here by using matrix approaches, solutions of the semi-regular group
divisible (srgd) and symmetric regular group divisible (rgd) designs listed
in Clatworthy [6] and elsewhere in the range of r, k ≤ 10 are obtained except
few. In the process non-isomorphic solutions of some srgd designs are also
obtained.

1 Introduction

1.1 Group divisible designs

Let v = mn elements be arranged in an m×n array. A group divisible (gd)
design is an arrangement of the v = mn elements in b blocks each of size k
such that:

1. Every element occurs at most once in a block;

2. Every element occurs in r blocks;

3. Every pair of elements, which are in the same row of the m×n array,
occur together in λ1 blocks; while every other pair of elements occur
together in λ2 blocks.
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The integers v = mn, b, r, k, λ1 and λ2 are known as parameters of the
gd design and they satisfy the relations: bk = vr and (n − 1)λ1 + n(m −
1)λ2 = r(k − 1). [1]. Furthermore, if r − λ1 = 0, then the gd design is
singular (S); if r − λ1 > 0 and rk − vλ2 = 0, then it is semi-regular (SR);
and if r − λ1 > 0 and rk − vλ2 > 0, the design is regular (R). For λ1 = 0
and λ2 = λ, the above definition is equivalent to uniform (k, λ)-gd design
of type nm, see Furino et al. [13] and Abel et al. [1]. Let N be the incidence
matrix of a gd design then the structure of NN ′ is given as:

(i) NN ′ =




(r − λ1)In + λ1Jn λ2Jn · · · λ2Jn

λ2Jn (r − λ1)In + λ1Jn · · · λ2Jn

...
...

. . .
...

λ2Jn λ2Jn · · · (r − λ1)In + λ1Jn




= (r − λ1)(Im ⊗ In)+(λ1 − λ2)(Im ⊗ Jn)+λ2(Jm ⊗ Jn)

The m× n array is given as:

1 2 3 · · · n
n+ 1 n+ 2 n+ 3 · · · n

...
...

...
...

...
(m− 1)n+ 1 (m− 1)n+ 2 (m− 1)n+ 3 · · · (m− 1)n

or (ii) NN ′ =




(r−λ2)Im+λ2Jm (λ1−λ2)Im+λ2Jm · · · (λ1−λ2)Im+λ2Jm

(λ1−λ2)Im+λ2Jm (r−λ2)Im+λ2Jm · · · (λ1−λ2)Im+λ2Jm

...
...

. . .
...

(λ1−λ2)Im+λ2Jm (λ1−λ2)Im+λ2Jm · · · (r−λ2)Im+λ2Jm




= (r−λ2)(In ⊗ Im)+λ2(Jn ⊗ Jm)+(λ1−λ2){(Jn−In)⊗ Jm}.

In this case, the m× n array is given as:

1 m+ 1 2m+ 1 · · · (n− 1)m+ 1
2 m+ 2 2m+ 2 · · · (n− 1)m+ 2
...

...
...

...
...

m 2m 3m · · · mn

The gd design whose incidence matrix is N ′ is called the dual of the de-
sign with incidence matrix N and the gd design whose incidence matrix
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is Jv×b − N is called the complement of the design with incidence matrix
N . Let D be a gd design with parameters: v = mn, b, r, k, λ1, λ2, m, n.
Then the complement of D is again a gd design with parameters: v∗ = v,
b∗ = b, r∗ = b− r, k∗ = v− k, λ∗

1 = b− 2r+ λ1, λ∗
2 = b− 2r+ λ2, m∗ = m,

n∗ = n.

Further let the incidence matrix of a gd design with parameters: v = mn,
b, r, k, λ1, λ2, m, n, be partitioned into m, n×b, submatrices using suitable
permutations of rows and columns of N such that each column sum of the
partitioned submatrix is θ. Then removing t rows of blocks of N we obtain
another gd design with parameters: v∗ = v − nt = n(m − t), b∗ = b,
r∗ = r, k∗ = k − tθ, λ∗

1 = λ1, λ∗
2 = λ2, m∗ = m − t, n∗ = n, where

θ = nr/b(= nλ2/r).

Example 1.1. The incidence matrix of SR65: v = b = 9, r = k = 6,
λ1 = 3, λ2 = 4, m = n = 3 may be partitioned in to 3× 9 submatrices such
that each column sum of the partitioned matrix is 2 as given below:

N =




0 1 1 0 1 1 0 1 1
1 0 1 1 0 1 1 0 1
1 1 0 1 1 0 1 1 0
0 1 1 1 0 1 1 1 0
1 0 1 1 1 0 0 1 1
1 1 0 0 1 1 1 0 1
0 1 1 1 1 0 1 0 1
1 0 1 0 1 1 1 1 0
1 1 0 1 0 1 0 1 1




Removing a row of blocks of we obtain another srgd design SR35: v = 6,
b = 9, r = 6, k = 4, λ1 = 3, λ2 = 4, m = 2, n = 3.

1.2 µ-Resolvable design

A block design D(v, b, r, k) whose b blocks can be divided into t = r/µ
classes, each of size β = vµ/k and such that in each class of β blocks every
element of D is replicated µ times, is called an µ-resolvable design. If µ = 1,
then the design is said to be resolvable.

Alternatively, if the incidence matrix N of a block design d(v, b, r, k) may be
partitioned into submatrices as: N = (N1|N2| · · · |Nt) where each Ni(1 ≤
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i ≤ t) is a v × vµ/k matrix such that each row sum of Ni is µ, then the
design is µ-resolvabe.

1.3 Some combinatorial matrices

An n × n matrix H = (Hij) with entries Hij as ±1 is called a Hadamard
matrix if HH ′ = H ′H = nIn, where H ′ is the transpose of H and In
is the identity matrix of order n. A Hadamard matrix is in normalized
form if its first row and first column contain only +1s. A rectangular
Hadamard matrix is an m × n (m < n) matrix with elements 1, −1 such
that XX ′ = mIm.

A Hadamard matrix is regular if the sum of the elements in any row of
the matrix is constant. It is known that the order of a regular Hadamard
matrix is a perfect square 4t2, t a positive integer. The number of entries
+1 in any row is a constant, either 2t2 − t or 2t2 + t. In the first case, any
two rows will have t2− t positions wherein both have entry +1 whereas the
second case has t2 + 1 positions wherein both have entry +1.

A generalized Bhaskar Rao design gbrd(v, b, r, k, λ;G) over a group G is a
v × b array with entries from G ∪ {0} such that:

1. Each row has exactly r group element entries;

2. Each column has exactly k group element entries;

3. For each pair of distinct rows (x1, x2, . . . , xb) and (y1, y2, . . . , yb), the
multi-set {xiy

−1
i :i=1, 2, . . . , b;xi, yi ̸= 0} contains each group element

exactly λ/|G| times.

When |G| = 2 , such a design is a Bhaskar Rao design. A generalized
Bhaskar Rao design gbrd(v, b, r, k, λ;G) with v = b and r = k is also known
as a balanced generalized Weighing matrix bgw(v, k, λ;G). A difference
matrix d(k, λg;G), is a gbrd(v, λg, λg, k, λg;G), i.e. difference matrices
are precisely gbrd ’s with non-zero entries. Further when k = λg, the
difference matrix is said to be a generalised Hadamard matrix over G of
order λg and index λ, gh(λg;G) , see de Launey [21]. If the diagonal
entries of bgw(v, k, λ;G) are zero and the inner product of any pair of
distinct rows contains each element of G exactly λ times, then it is known
as a generalized conference matrix, gc(G;λ). The order of gc(G;λ) is
λg + 2.
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A Conference matrix of order n is an n×n matrix C with diagonal entries
0 and off-diagonal entries ±1 such that CC ′ = (n − 1)In. A conference
matrix is normalized if all entries in its first row and first column are 1
(except the (1, 1)-entry which is 0). The core of a normalized conference
matrix C consists of all the rows and columns of C except the first row and
column. For more details on combinatorial matrices we refer to Ionin and
Kharghani [17], Abel et al. [1] and Tonchev [33].

1.4 Balanced incomplete block design

A balanced incomplete block design (BIBD) or a 2-(v, k, λ) design is an
arrangement of v elements into b blocks, each of size k (< v), such that
every element occurs in exactly r blocks and any two distinct elements
occur together in λ blocks.

It is well known that the existence of a Hadamard matrix of order 4t implies
the existence of a bibd or a Hadamard design with parameters: v = b =
4t− 1, r = k = 2t− 1, λ− 1, see Dey [9]. Such a design is skew Hadamard
if N + N ′ = (J − I)4t−1, where N is the incidence matrix of the 2-(4t −
1, 2t− 1, t− 1) design.

The main aim of the paper is to obtain solution of gd designs in the range
of r, k ≤ 10 available in Clatworthy [6] and elsewhere using matrix ap-
proaches. A comprehensive coverage on the constructions of gd designs
may be found in Clatworthy [6], Dey and Balasubramanian [10], Dey [8, 9],
Raghavarao [24], Raghavarao and Padgett [25], Saurabh et al. [28] and
Saurabh and Sinha [29]. Kharaghani and Suda [20] introduced the concept
of linked systems of symmetric gd designs. Several methods of construc-
tions of srgd and symmetric rgd designs by various authors are scattered
throughout the literature, see Clatworthy [6] and elsewhere. Dey [7], He-
dayat and Wallis [16], Bush [4], Kageyama and Tanaka [19], Gibbons and
Mathon [15], Cheng [5], Sarvate and Seberry [26], Kadowaki and Kageyama
[18] gave matrix approaches to their constructions. Apart from the works
of these authors, some simple matrix approaches replace most of the earlier
construction methods. These constructions cover all the srgd and sym-
metric rgd designs found in Clatworthy [6] and elsewhere in the range
of r, k ≤ 10 except few. In the process µ-resolvable solutions of some
srgd designs are also obtained.
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Notations:

In is the identity matrix of order n.

Jv×b is the v× b matrix all of whose entries are 1, Jv×v is denoted by
Jv.

A′ is the transpose of matrix A.

en is a 1× n matrix with entries 1.

A⊗B is the Kronecker product of two matrices A and B.

0m×n is the zero matrix of order m× n.

ea(pn) ≈ Cp×Cp×· · ·×Cp (n copies) denotes the elementary abelian
group of order pn and Cp = ea(p) is a cyclic group of order p, where
p is a prime.

SRX and RX numbers are from Clatworthy [6]. The design number
SRX(a/b/c. . . ) occurs between SRX and SR(X+1), see Freeman [12]
and Dey [7].

2 Earlier constructions

Replacing 1 by I2 and −1 by (J − I)2 in a Hadamard matrix of order 2
we obtain a srgd design SR1: v = b = 4, r = k = 2, λ1 = 0, λ2 = 1,
m = n = 2. Further replacing 1 by I2 and -1 by (J − I)2 in a Hadamard
matrix of order 4t we obtain:

Theorem 2.1 (Sinha [31], Kadowaki and Kageyama [18]).
The existence of a Hadamard matrix of order 4t is equivalent to the existence
of a symmetric srgd design with parameters: v = b = 8t, r = k = 4t,
λ1 = 0, λ2 = 2t, m = 4t, n = 2.

Replacing the elements of a group G of order g by the corresponding
g × g permutation matrices and each 0 entry by a g × g null matrix in
a gbrd(v, b, r, k, λ;G) we obtain:

Theorem 2.2 (Gibbons and Mathon [15]).
The existence of a gbrd(v, b, r, k, λ;G) over a group G implies the existence
of a gd design with parameters: v∗ = vg, b∗ = bg, r∗ = r, k∗ = k, λ1 = 0,
λ2 = λ/g, m = v, n = g.
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As a special case of Theorem 2.2, we have:

Theorem 2.3 (Sarvate and Seberry [26]).
The existence of a gbrd(v, b, r, k, λ;G) over an elementary abelian group
G of order g, ea(g) implies the existence of a gd design with parameters:
v∗ = vg, b∗ = bg, r∗ = r, k∗ = k, λ1 = 0, λ2 = λ/g, m = v, n = g.

Theorem 2.4 (Raghavarao and Padgett [25]).
There exists a GD design with parameters: v =b=4s, r = k = s + 2,
λ1 = s− 2, λ2 = 2, m = 4, n = s; s ≥ 2.

Theorem 2.5 (Raghavarao and Padgett [25]).
There exists a gd design with parameters: v =b=3n, r = k = n+1, λ1 = n,
λ2 = 1, m = 3, n.

Remark 2.6. The gd design in Theorem 2.4 is obtained by replacing 1 by
In and −1 by (J − I)n in a regular Hadamard matrix of order 4 and the
gd design in Theorem 2.5 is obtained by replacing 1 by In and −1 by Jn
in the core of a conference matrix of order 4.

Theorem 2.7 (Bush [4], Kageyama and Tanaka [19], Corollary 4.1.1.).
If there exists a skew Hadamard design with parameters: v′ = b′ = 4t − 1,
r′ = k′ = 2t− 1, λ′ = 1, then there is a symmetric regular gd design with
parameters: v =b=3(4t− 1), r =k=2t+ 1, λ1 = t− 1, λ2 = 1, m = 3, n.

Theorem 2.8 (Kageyama and Tanaka [19, Corollary 4.1.4]).
There exist for n ≥ 2 symmetric rgd designs with parameters:

(i) v =b=7n, r = k = n+ 2, λ1 = n− 2, λ2 = 1, m = 7, n.

(ii) v =b=7n, r =k=3n− 2, λ1 = 3(n− 2), λ2 = n− 1, m = 7, n.

3 The constructions

3.1 Construction theorems for srgd designs

Theorem 3.1. The existence of a Hadamard matrix of order 4t implies
the existence of srgd designs with parameters:

(i) v = 2m, b = 4t, r = 2t, k = m, λ1 = 0, λ2 = t, m, n = 2; (1)

(ii) v = 4mt, b = 4t(4t− 1), r = 2t(4t− 1), k = 2mt,
λ1 = 2t(2t− 1), λ2 = t(4t− 1), m, n = 4t; (2)

where 1 < m < 4t.
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Proof. Let H∗ be a rectangular Hadamard matrix obtained by deleting
4t −m − 1 rows of a Hadamard matrix of order 4t such that its first row
contains only 1s. Let H be the m×4t matrix obtained by deleting the first
row of H∗. Then each row sum of H is zero and Jm×4tH

′ = HJ ′
m×4t = 0m.

(i) We claim that N =
((Jm×4t)+H)/2
(Jm×4t)−H)/2

)
=

(
N1

N2

)
is the incidence matrix of

the srgd design with parameters (1). We have

N1N
′
1 = (Jm×4t +H)(J ′

m×4t +H ′)/4

= (Jm×4tJ
′
m×4t +HH ′)/4 = 2tIm + t(J − I)m

N2N
′
2 = (Jm×4t −H)(J ′

m×4t −H ′)/4

= (Jm×4tJ
′
m×4t +HH ′)/4 = 2tIm + t(J − I)m

N1N
′
2 = (Jm×4t +H)(J ′

m×4t −H ′)/4

= (Jm×4tJ
′
m×4t −HH ′)/4 = t(J − I)m

Also each column sum of N is m. Hence N represents a srgd design
with Parameters (1).

(ii) Let H∗∗ be the 4t × (4t − 1) matrix obtained by deleting the first
column of a normalized Hadamard matrix of order 4t. Let N be the
(0, 1)-matrix obtained by replacing 1 by (Jm×4t + H)/2 and −1 by
(Jm×4t −H)/2 in H∗∗. Also each column sum of N is 2mt. Then N
represents a srgd design with Parameters (2) which may be easily
verified.

Remark 3.2. Theorem 3.1(i) is the matrix construction of the Theorem 2.7
of Bush [4].

Example 3.3. Let m = 5, t = 2. Let H∗ be a rectangular Hadamard
matrix of order 6 × 8 whose first row contains only ones. Then a 5 × 8
rectangular Hadamard matrix H obtained by deleting first row of H∗ is
given as:

H =




1 −1 1 −1 1 −1 1 −1
1 1 −1 −1 1 1 −1 −1
1 −1 −1 1 1 −1 −1 1
1 1 1 1 −1 −1 −1 −1
1 −1 1 −1 −1 1 −1 1




.
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Now using Theorem 3.1(i), N =
((J5×8+H)/2
(J5×8−H)/2

)
represents a srgd design

SR52: v = 10, r = 4, k = 5, b = 8, λ1 = 0, λ2 = 2, m = 5, n = 2 whose
blocks are given as:

(1, 2, 3, 4, 5); (2, 4, 6, 8, 10); (1, 4, 5, 7, 8); (3, 4, 6, 7, 10);
(1, 2, 3, 9, 10); (2, 5, 6, 8, 9); (1, 7, 8, 9, 10); (3, 5, 6, 7, 9).

The 5× 2 array is given as transpose of the array: 1 2 3 4 5
6 7 8 9 10

.

Example 3.4. Let m = 3, t = 1. Consider a normalized Hadamard matrix
H∗ of order 4:

H∗ =




1 1 1 1
1−1 1−1
1 1−1−1
1−1−1 1


 .

Then

H =




1−1 1−1
1 1−1−1
1−1−1 1




and

H∗∗ =




1 1 1
−1 1−1
1−1−1

−1−1 1


 .

Now replacing 1 by (J3×4+H)/2 and -1 by (J3×4−H)/2 in H∗∗, we obtain
a (0, 1)-matrix

N =




(J3×4 +H)/2 (J3×4 +H)/2 (J3×4 +H)/2
(J3×4 −H)/2 (J3×4 +H)/2 (J3×4 −H)/2
(J3×4 +H)/2 (J3×4 −H)/2 (J3×4 −H)/2
(J3×4 −H)/2 (J3×4 −H)/2 (J3×4 +H)/2


 ,

which represents a srgd design SR68: v = b = 12, r = k = 6, λ1 = 2,
λ2 = 3, m = 3, n = 4 [vide Theorem 3.1(ii)] whose blocks are given as:

(1, 2, 3, 7, 8, 9); (2, 4, 6, 8, 10, 12); (1, 5, 6, 7, 11, 12); (3, 4, 5, 9, 10, 11);
(1, 2, 3, 4, 5, 6); (2, 5, 7, 9, 10, 12); (1, 4, 8, 9, 11, 12); (3, 6, 7, 8, 10, 11);

(1, 2, 3, 10, 11, 12); (2, 4, 6, 7, 9, 11); (1, 5, 6, 8, 9, 10); (3, 4, 5, 7, 8, 12)

The 3× 4 array is given as:
1 4 7 10
2 5 8 11
3 6 9 12

.
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van Lint and Wilson [34, p.229] used Ei-matrices (1 ≤ i ≤ 3) in the con-
struction of a bibd with parameters: v = 9, b = 12, r = 4, k = 3, λ = 1,
where Ei denotes a 3 by 3 matrix with 1 in column i and 0s elsewhere.
Here we are defining Ei-matrices as an n by n matrix with 1s in i-th row
and 0s elsewhere. A permutation matrix P is an by matrix with entries 0
and 1 such that each row and column of P contains 1 exactly once and is
0 elsewhere. Then

(i)
n∑

i=1

Ei = Jn;
n∑

i=1

EiE
′
i = nIn

(ii) EiP = Ei, (1 ≤ i ≤ n).

Clearly α = circ.(0 1 0 · · · 0) is an n by n permutation matrix.

Theorem 3.5. There exists an srgd design with parameters:

v = 3n, b = n2, r = n, k = 3, λ1 = 0, λ2 = 1, m = 3, n. (3)

Proof. Let Ei (1 ≤ i ≤ n) denote an n× n matrix whose i-th row contains
only +1s and is 0 elsewhere. Let α = circ.(0 1 0 · · · 0) denote a circulant
matrix of order n with +1 at the second position of the first row and is 0
elsewhere. Then

N =




E1 E2 · · · En

In In · · · In
In α · · · αn−1




is the incidence matrix of an srgd design with Parameters (3). This may
be easily verified.

Theorem 3.6. There exists a g-resolvable srgd design with parameters:

v = g(λg + 1), b = λg2, r = λg, k = λg + 1,
λ1 = 0, λ1 = λ, m = λg + 1, n = g,

(4)

when g is a prime or prime power.

Proof. It is well known (see Kharaghani and Suda [20]) that the existence
of a gh(λg;G) over G = ea(g) implies the existence of an srgd design with
parameters:

v′ = b′ = λg2, r′ = k′ = λg,
λ′
1 = 0, λ′

2 = λ, m′ = λg, n′ = g.
(5)
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Let M be the incidence matrix of a gd design with Parameters (5). We
construct a matrix as follows:

[
(E1 E2 · · · Eg) · · · (E1 E2 · · · Eg)

M

]
,

where Ei (1 ≤ i ≤ g) is a g×g matrix whose i-th row contains only +1s and
is 0 elsewhere; and (E1 E2 · · · Eg) is adjoined λ times in a row above M .
Clearly N can be partitioned into submatrices each of size v×g2, such that
each row sum of partitioned matrix is g. Hence we obtain a g-resolvable
srgd design with Parameters (4) .

3.2 Non-isomorphic solutions of some srgd designs

Example 3.7. Consider a gh(6;C3) with entries from a cyclic group C3 =
{1, w, w2}:

gh(6;C3) =




1 1 1 1 1 1
1 w w2 w w2 1
1 w2 w w 1 w2

1 w2 w2 1 w w
1 1 w w2 w2 w
1 w 1 w2 w w2




.

Then using gh(6;C3) in Theorem 3.6;

N =




E1 E2 E3 E1 E2 E3

I3 I3 I3 I3 I3 I3
I3 α α2 α α2 I3
I3 α2 α α I3 α2

I3 α2 α2 I3 α α
I3 I3 α α2 α2 α
I3 α I3 α2 α α2




represents a 3-resolvable srgd design SR84: v = 21, b = 18, r = 6, k = 7,
λ1 = 0, λ2 = 2, m = 7, n = 3, where α = circ.(0 1 0) is a circulant matrix
of order 3. For the same design a non-resolvable solution is reported in
Clatworthy [6]. The resolution classes are

RI: [(1, 4, 7, 10, 13, 16, 19); (1, 5, 8, 11, 14, 17, 20); (1, 6, 9, 12, 15, 18, 21);
(2, 4, 9, 11, 14, 16, 21); (2, 5, 7, 12, 15, 17, 19); (2, 6, 8, 10, 13, 18, 20);
(3, 4, 8, 12, 14, 18, 19); (3, 5, 9, 10, 15, 16, 20); (3, 6, 7, 11, 13, 17, 21)]
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RII: [(1, 4, 9, 12, 13, 17, 20); (1, 5, 7, 10, 14, 18, 21); (1, 6, 8, 11, 15, 16, 19);
(2, 4, 8, 10, 15, 17, 21); (2, 5, 9, 11, 13, 18, 19); (2, 6, 7, 12, 14, 16, 20);
(3, 4, 7, 11, 15, 18, 20); (3, 5, 8, 12, 13, 16, 21); (3, 6, 9, 10, 14, 17, 19)]

The 7× 3 array is given as transpose of the array:
1 4 7 10 13 16 19
2 5 8 11 14 17 20
3 6 9 12 15 18 21

Example 3.8. Using gh(8;ea(4)) in Theorem 3.6, we obtain a 4-resolvable
solution of SR103. For the same design a non-resolvable solution is reported
in Clatworthy [6].

Example 3.9. Using gh(5;C5) in Theorem 2.3, it can be observed that

N1 =




I5 a2 a3 a3 a2

a a4 a a2 a2

a4 a3 a a3 a4

a4 a4 a3 a a3

a a2 a2 a a4




and N1 =




I5 a a4 a4 a
I5 a4 I5 a3 a3

I5 a2 a a2 I5
I5 I5 a2 a a2

I5 a3 a3 I5 a4




both represent SR60. Juxtaposing N1 and N2 we obtain a quasidouble
resolvable solution of SR61, for which only a duplicate solution of SR60 is
reported.

3.3 Construction theorems for rgd designs

Theorem 3.10. The existence of a skew Hadamard design with parameters:

v′ = b′ = 4t− 1, r′ = k′ = 2t− 1, λ′ = t− 1

implies the existence of a group divisible design witt-h parameters:

v = 8t = b, r = 4t− 1 = k, λ1 = 0, λ2 = 2t− 1, m = 4t, n = 2. (6)

Proof. Let N be the incidence matrix of a skew Hadamard design with
parameters:

v′ = b′ = 4t− 1, r′ = k′ = 2t− 1, λ′ = t− 1.

Then N +N ′ = (J − I)4t−1. Let

M1 =

(
0 e4t−1

e′4t−1 N

)
and M2 =

(
0 01×(4t−1)

0′1×(4t−1) N ′

)
.
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Then we claim that
M =

(
M1 M2

M2 M1

)

represents a gd design with Parameters (6). We have

(i) M1M
′
1 +M2M

′
2

=




4t − 1 2t − 1 2t − 1 . . . 2t − 1
2t − 1 2t t · · · t
2t − 1 t 2t · · · t

...
...

...
...

...
2t − 1 t t · · · 2t


+




0 0 0 . . . 0
0 2t − 1 t − 1 · · · t − 1
0 t − 1 2t − 1 · · · t − 1

...
...

...
...

...
0 t − 1 t − 1 · · · 2t − 1




= (4t− 1)I4t + (2t− 1)(J − I)4t.

(ii) Also N +N ′ = (J − I)4t−1

⇒ N2 + (N ′)2 +NN ′ +N ′N = (J − I)4t−1(J − I)′4t−1

⇒ N2 + (N ′)2 = (2t− 1)(J − I)4t−1

M1M
′
2 +M2M

′
1 =




0 2t− 1 2t− 1 · · · 2t− 1
2t− 1
2t− 1

...
2t− 1

N2 + (N ′)2




=




0 2t− 1 2t− 1 · · · 2t− 1
2t− 1 0 2t− 1 · · · 2t− 1
2t− 1 2t− 1 0 · · · 2t− 1

...
...

...
...

...
2t− 1 2t− 1 2t− 1 · · · 0




= (2t− 1)(J − I)4t.

Hence M represents the incidence matrix of a gd design with Parame-
ters (6).

Theorem 3.11. When 4t + 1 is a prime or prime power, there exists a
group divisible design with parameters:

v=4(2t+ 1) = b, r =k=4t+ 1, λ1 = 0,
λ2 = 2t, m=2(2t+ 1), n=2. (7)
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Proof. When 4t+ 1 is a prime or prime power, the initial blocks:

(x0, x2, x4, . . . , x4t−2) and (x1, x3, x5, . . . , x4t−1)

generate a bibd with parameters:

v = 4t+ 1, b = 2(4t+ 1), r = 4t, k = 2t, λ = 2t− 1,

where x is a primitive element of the Galois field gf(4t + 1). Let N1 be
the incidence matrix corresponding to the block design with initial block
(x0, x2, x4, . . . , x4t−2) and N2 be the incidence matrix corresponding to the
block design with initial block (x1, x3, x5, . . . , x4t−1). Then the rows and
columns of N1 and N2 can be permuted such that N1 +N2 = (J − I)4t+1.
Let

M1 =

(
0 e4t+1

e′4t+1 N1

)
and M2 =

(
0 01×4t+1

0′1×4t+1 N1

)
.

Then we claim that
M =

(
M1 M2

M2 M1

)

represents a gd design with Parameters (7). We have

(i) M1M
′
1 +M2M

′
2

=




4t + 1 2t 2t · · · 2t
2t
2t

...
2t

J4t+1 + N1N
′
1 + N2N

′
2


 =




4t + 1 2t 2t . . . 2t
2t 4t + 1 2t · · · 2t
2t 2t 4t + 1 · · · 2t

...
...

...
...

2t 2t 2t · · · 4t + 1




= (4t+ 1)I4t+2 + 2t(J − I)4t+2.

(ii) N1 +N2 = (J − I)4t+1 ⇒ N1N
′
2 +N2N

′
1 = 2t(J − I)4t+1

M1M
′
2 +M2M

′
1 =




0 2t 2t · · · 2t
2t
2t
...
2t

N1N
′
2 +N2N

′
1




=




0 2t 2t · · · 2t
2t 0 2t · · · 2t
2t 2t 0 · · · 2t
...

...
...

...
...

2t 2t 2t · · · 0




= 2t(J − I)4t+2.
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Hence M represents the incidence matrix of a gd design with Parame-
ters (7).

Remark 3.12. The gd designs in Theorem 3.11 have been constructed us-
ing difference sets and a connection between partial difference sets and
gd designs may be found in Ma [23] and Arasu et al. [2]. Further Theo-
rems 3.10 and 3.11 yield patterned constructions for the rgd designs R177a
and R197a respectively. For these designs trial and error solutions are re-
ported in Dey [7].

Theorem 3.13. When s ≥ 2 there exists a gd design with parameters

v = b = sn, r = k = (s− 1)n+ 1,
λ1 = (s− 1)n, λ2 = (s− 2)n+ 2, m = s, n

(8)

Proof. We claim that N = Is ⊗ In + (J − I)s ⊗ Jn is the incidence matrix
of a gd design with Parameters (8). We have

NN ′ =




In + (s − 1)J2
n 2Jn + (s − 2)J2

n · · · 2Jn + (s − 2)J2
n

2Jn + (s − 2)J2
n In + (s − 1)J2

n · · · 2Jn + (s − 2)J2
n

...
...

...
...

2Jn + (s − 2)J2
n 2Jn + (s − 2)J2

n · · · In + (s − 1)J2
n




=




{n(s − 1) + 1}In+n(s − 1)(J − I)n · · · {n(s − 2) + 2}Jn

...
. . .

...

{n(s − 2) + 2}Jn · · · {n(s − 1) + 1}In+n(s − 1)(J − I)n




= {n(s − 1) + 1}(Is ⊗ In)+{n(s − 1)}Is ⊗ (J − I)n + {n(s − 2) + 2}(Js − Is) ⊗ Jn.

Hence N represents a gd design with Parameters (8).

Theorem 3.14. The existence of a Conference matrix of order t ≥ 6 and
a bibd with parameters: v = 2k, b, r, k, λ implies the existence of a
rgd design with parameters

v∗ = (t− 1)v, b∗ = (t− 1)b, r∗ = r + b(t− 2)/2, k∗ = k + v(t− 2)/2,
λ∗
1 = λ+ b(t− 2)/2, λ∗

2 = r(t− 2)/2, m∗ = t− 1, n∗ = v
(9)

Proof. Let C∗ be the core of a normalized Conference matrix C and N be
the incidence matrix of a bibd with parameters: v = 2k, b, r, k, λ. Then
replacing 1 by Jv,b, 0 by N and −1 by 0v,b in C∗ we obtain a gd design
with Parameters (9).
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Remark 3.15. Theorem 3.14 is the generalization of Theorem 2.2 of Bhag-
wandas and Parihar [3]. For t = 6 we obtain Theorem 2.2 of Bhagwandas
and Parihar [3].

For N = I2 in Theorem 3.14, we obtain:

Corollary 3.16. There exists a rgd design with parameters:

v = b = 2(t− 1), r = k = t− 1,
λ1 = t− 2, λ2 = (t− 2)/2, m = t− 1, n = 2.

(10)

Theorem 3.17. The existence of a symmetric 2-(v, k, λ) design implies
the existence of a rgd design with parameters:

v∗ = b∗ = sv, r∗ = k∗ = (s− 1)v + k,
λ1 = (s− 1)v + λ, λ2 = 2r + (s− 2)v, m = s, n.

(11)

Proof. Let N be the incidence matrix of a symmetric 2-(v, k, λ) design.
Then M = Is ⊗N + (J − I)s ⊗ Jv is the incidence matrix of a gd design
with Parameters (11).

Theorem 3.18. There exists a symmetric rgd design with parameters:

v∗ = b∗ = 3g2, r∗ = k∗ = 2g,
λ1 = g, λ2 = 1, m = 3g, n = g,

(12)

where g = pn is a prime power.

Proof. Let C be the g×(g−1) matrix obtained by deleting the first column
of a normalised gh(g2;ea(g)). Let M be a (0, 1)-block matrix obtained by
replacing group elements of C by the corresponding permutation matrices
and let the rows of M be R1, R2, . . . , Rg. Then

N =




circ.(0g 0g · · · 0g|E1 E2 · · · Eg|E′
1 R1)

circ.(0g 0g · · · 0g|E1 E2 · · · Eg|E′
2 R1)

...
circ.(0g 0g · · · 0g|E1 E2 · · · Eg|E′

g R1)




represents a rgd design with Parameters (12), where the Ei-matrices
(1 ≤ i ≤ g) are matrices whose i-th row contains only +1s and is 0
elsewhere.
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Example 3.19. For g = 3 we obtain R170: v = b = 27, r = k = 6, λ1 = 3,
λ2 = 1, m = 9, n = 3, whose incidence matrix is given as:

N =




circ.(03 03 03|E1 E2 E3|E′
1 I3 I3)

circ.(03 03 03|E1 E2 E3|E′
2 α2 α)

circ.(03 03 03|E1 E2 E3|E′
3 α α2)




=




03 03 03 E1 E2 E3 E′
1 I3 I3

E′
1 I3 I3 03 03 03 E1 E2 E3

E1 E2 E3 E′
1 I3 I3 03 03 03

03 03 03 E1 E2 E3 E′
2 α2 α

E′
2 α2 α 03 03 03 E1 E2 E3

E1 E2 E3 E′
2 α2 α 03 03 03

03 03 03 E1 E2 E3 E′
3 α α2

E′
3 α α2 03 03 03 E1 E2 E3

E1 E2 E3 E′
3 α α2 03 03 03




Example 3.20. For g = 4 we obtain R190: v = b = 48, r = k = 8, λ1 = 4,
λ2 = 1, m = 12, n = 4, whose incidence matrix is given as:

N =




circ.(04 04 04 04|E1 E2 E3 E4|E′
1 I4 I4 I4)

circ.(04 04 04 04|E1 E2 E3 E4|E′
2 A B C)

circ.(04 04 04 04|E1 E2 E3 E4|E′
2 C A B)

circ.(04 04 04 04|E1 E2 E3 E4|E′
2 B C A)


 ,

where A = I2 ⊗ (J − I)2, B = (J − I)2 ⊗ (J − I)2, A = (J − I)2 ⊗ I2.

4 Tables of designs

This section contains Tables (1–3) of semi-regular and symmetric regular
gd designs listed in Clatworthy [6] and elsewhere in the range of r, k ≤ 10
constructed using the present theorems. The designs obtained by dupli-
cating, deletion of groups and taking complement are not included in the
Tables.

The generalised Hadamard matrices, gh(λg;G) used in Tables 1 and 2 may
be found in de Launey [22]. hn denotes a Hadamard matrix of order n.
The srgd design SR109a may be found in Ghosh and Divecha [14].
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Table 1: Symmetrical semi-regular group divisible designs
No. gd: (v, k, λ1, λ2,m, n) Source

1 SR1: ( 4, 2, 0, 1, 2, 2) Th. 2.1, h2

2 SR23: ( 9, 3, 0, 1, 3, 3) Th. 3.6(5); gh(3;C3)

3 SR36: ( 8, 4, 0, 2, 4, 2) Th. 2.1, h4

4 SR44: (16, 4, 0, 1, 4, 4) Th. 3.6(5); gh(4;EA(4))

5 SR60: (25, 5, 0, 1, 5, 5) Th. 3.6(5); gh(5;C5)

6 SR67: (12, 6, 0, 3, 6, 2) Th. 2.8(i); m = 6, t = 3

7 SR68: (12, 6, 2, 3, 3, 4) Th. 3.1(ii); m = 3, t = 1

8 SR72: (18, 6, 0, 2, 6, 3) Th. 3.6(5); gh(6;C3)

9 SR87: (49, 7, 0, 1, 7, 7) Th. 3.6(5); gh(7;C7)

10 SR92: (16, 8, 0, 4, 8, 2) Th. 2.1, h8

11 SR95: (32, 8, 0, 2, 8, 4) Th. 3.6(5); gh(8;EA(4))

12 SR97: (64, 8, 0, 1, 8, 8) Th. 3.6(5); gh(8;EA(8))

13 SR102: (27, 9, 0, 3, 9, 3) Th. 3.6(5); gh(9;C3)

14 SR105: (81, 9, 0, 1, 9, 9) Th. 3.6(5); gh(9;EA(9))

15 SR108: (20, 10, 0, 5,10, 2) Th. 3.1(i); m = 10, t = 5

16 SR109a: (50, 10, 0, 2,10, 5) Th. 3.6(5); gh(10;C5)

Table 2: Asymmetrical semi-regular group divisible designs

No. gd: (v, r, k, b, λ1, λ2,m, n) Source
17 SR30: (18, 6, 3, 36, 0, 1, 3, 6) Th. 3.5, n = 6

18 SR34: (30, 10, 3, 100, 0, 1, 3, 10) Th. 3.5, n= 10
19 SR38: (8, 6, 4, 12, 2, 3, 2, 4) Th. 3.1 (ii); m = 2, t = 1

20 SR41: (12, 3, 4, 9, 0, 1, 4, 3) Th. 3.6(4); gh(3;C3)

21 SR51: (40, 10, 4, 100, 0, 1, 4, 10) Unknown
22 SR58: (20, 4, 5, 16, 0, 1, 5, 4) Th. 3.6(4); gh(4; ea(4))
23 SR66: (12, 4, 6, 8, 0, 2, 6, 2) Th. 3.1 (i); m = 6, t = 2

24 SR71: (12, 10, 6, 20, 4, 5, 2, 6) Dual of SR106
25 SR75: (30, 5, 6, 25, 0, 1, 6, 5) Th. 3.6(4); gh(5;C5)

26 SR80: (14, 4, 7, 8, 0, 2, 7, 2) Th. 3.1 (i); m = 7, t = 2

27 SR84: (21, 6, 7, 18, 0, 2, 7, 3) Th. 3.6(4); gh(6;C3)

28 SR91: (16, 6, 8, 12, 0, 3, 8, 2) Th. 2.8 (i); m = 8, t = 3

29 SR96: (56, 7, 8, 49, 0, 1, 8, 7) Th. 3.6(4); gh(7;C7)

30 SR103: (36, 8, 9, 32, 0, 2, 9, 4) Th. 3.6(4); gh(8; ea(4))
31 SR104: (72, 8, 9, 64, 0, 1, 9, 8) Th. 3.6(4); gh(8; ea(8))
32 SR106: (20, 6, 10, 12, 0, 3, 10, 2) Th. 3.1 (i); m = 10, t = 3

33 SR107: (20, 8, 10, 16, 0, 4, 10, 2) Th. 3.1 (i); m = 10, t = 4

34 SR109: (30, 9, 10, 27, 0, 3, 10, 3) Th. 3.6(4); gh(9;C3)

35 SR110: (90, 9, 10, 81, 0, 1, 10, 9) Th. 3.6(4); gh(9; ea(9))
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Remark 4.1. The incidence matrix N of the above series (except Theo-
rem 3.1) of srgd designs are partitioned into submatrices such that each
partitioned matrix has column sum one. Hence removing a row of blocks
of N we obtain another srgd design. And continuing so on we obtain:
SR108 → · · · → SR5; SR105 → · · · → SR16; SR36 → · · · → SR2; SR102 →
· · · → SR8; SR95 → · · · → SR10; SR97 → · · · → SR15; SR87 → · · · → SR14;

SR60 → · · · → SR11; SR23 → SR6; SR34 → SR17; SR92 → · · · → SR4;

SR106 → · · · → SR3; SR30 → SR13; SR44 → · · · → SR9; SR109a → SR103a →
· · · → SR61.

The parameters of SR103a, SR95a and SR86a are (45, 10, 9, 50, 0, 2, 9, 5),
(40, 10, 8, 50, 0, 2, 8, 5), and (35, 10, 7, 50, 0, 2, 7, 5) respectively. SR35 is the
complement of SR6.

Table 3: Symmetric regular group divisible designs

No. gd: (v, k, λ1, λ2,m, n) Source
1 R42: (6, 3, 2, 1, 3, 2) Th. 2.4; n = 2

2 R54: (8, 3, 0, 1, 4, 2) Th. 3.10, t = 1

3 R94: (6, 4, 3, 2, 2, 3) Th. 3.13; s = 2, n = 3

4 R104: (9, 4, 3, 1, 3, 3) Th. 2.5; n = 3

5 R109: (12, 4, 2, 1, 6, 2) Th. 3.18; g = 2

6 R112: (14, 4, 0, 1, 7, 2) Th. 2.2; bgw(7, 4, 2;C2)

7 R114: (15, 4, 0, 1, 5, 3) Th. 2.2; bgw(5, 4, 3;C3)

8 R133: (8, 5, 4, 2, 2, 4) Th. 3.13; s = 2, n = 4

9 R139: (10, 5, 4, 2, 5, 2) Corollary 3.16; t = 6

10 R143: (12, 5, 4, 1, 3, 4) Th. 2.5; n = 4

11 R144: (12, 5, 0, 2, 6, 2) Th. 3.11; t = 1

12 R145: (12, 5, 1, 2, 4, 3) Th. 2.4; s = 3

13 R166: (10, 6, 5, 2, 2, 5) Th. 3.5; s = 2, n = 5

14 R168: (15, 6, 5, 1, 3, 5) Th. 2.5; n = 5

15 R170: (27, 6, 3, 1, 9, 3) Th. 3.18; g = 3

16 R171: (28, 6, 2, 1, 7, 4) Th. 2.8 (i); n = 4

17 R172: (9, 7, 6, 5, 3, 3) Th. 3.13; s = n = 3

18 R173: (12, 7, 6, 2, 2, 6) Th. 3.13; s = 2, n = 6

19 R177: (14, 7, 6, 3, 7, 2) Corollary 3.16; t = 8

20 R177a: (16, 7, 0, 3, 8, 2) Th. 3.10, t = 2

21 R177b: (16, 7, 2, 3, 4, 4) Unknown
22 R178: (18, 7, 6, 1, 3, 6) Th. 2.4; n = 6

23 R179: (20, 7, 3, 2, 4, 5) Th. 2.5; s = 5

24 R180: (20, 7, 6, 2, 10, 2) Unknown
25 R180a: (21, 7, 3, 2, 7, 3) Th. 2.8 (ii); n = 3

26 R180b: (24, 7, 0, 2, 8, 3) Th. 2.2; gc(C3; 2)

27 R182: (33, 7, 2, 1, 3, 11) Th. 2.7; t = 3

28 R182a: (35, 7, 3, 1, 7, 5) Th. 2.8 (i); n = 5
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29 R182b: (45, 7, 0, 1, 15, 3) Th. 2.2; bgw(15, 7, 3;C3)

30 R183: (48, 7, 0, 1, 8, 6) Th. 2.2; gc(C6; 1)

31 R187: (14, 8, 7, 2, 2, 7) Th. 3.13; s = 2, n=7
32 R188: (21, 8, 7, 1, 3, 7) Th. 2.5; n = 7

33 R189: (24, 8, 4, 2, 4, 6) Th. 2.4; s = 6

34 R189a: (42, 8, 4, 1, 7, 6) Th. 2.8 (i); n = 6

35 R190: (48, 8, 4, 1, 12, 4) Th. 3.18; g = 4

36 R191: (63, 8, 0, 1, 9, 7) Th. 2.2; gc(C7; 1)

37 R193: (12, 9, 8, 6, 3, 4) Th. 3.13; s = 3, n=4
38 R195: (16, 9, 8, 2, 2, 8) Th. 3.13; s = 2, n=8
39 R196: (18, 9, 6, 4, 6, 3) Unknown
40 R197: (18, 9, 8, 4, 9, 2) Corollary 3.16; t = 10
41 R197a: (20, 9, 0, 4, 10, 2) Th. 12, t = 2

42 R197b: (20, 9, 3, 4, 4, 5) Unknown
43 R198: (24, 9, 8, 1, 3, 8) Th. 2.5; n = 8

44 R198b: (24, 9, 6, 3, 12, 2) [11, Theorem 2.4];
45 R199: (26, 9, 0, 3, 13, 2) Th. 2.2; bgw(13, 9, 6;C2)

46 R200: (28, 9, 5, 2, 4, 7) Th. 2.4; s = 7

47 R200a: (38, 9, 0, 2, 19, 2) Th. 2.2; bgw(19, 9, 4;C2)

48 R200b: (39, 9, 0, 2, 13, 3) [29]
49 R200c: (40, 9, 0, 2, 10, 4) Th. 2.2; bgw(10, 9, 8;C4)

50 R200d: (45, 9, 3, 1, 3, 15) Th. 2.7; t = 4

51 R200e: (49, 9, 5, 1, 7, 7) Th. 2.8 (i); n = 7

52 R201: (78, 9, 0, 1, 13, 6) Th. 2.2; bgw(13, 9, 6;S3)

53 R202: (80, 9, 0, 1, 10, 8) Th. 2.2; gc(Q8; 1)

54 R203: (12, 10, 9, 8, 4, 3) Th. 3.13; s = 4, n=3
55 R204: (14, 10, 8, 6, 2, 7) Th. 3.17; s = 2 and 2–(7, 3, 1) design
56 R206: (18, 10, 9, 2, 2, 9) Th. 3.13; s = 2, n=9
57 R206a: (21, 10, 9, 4, 7, 3) [28]
58 R206b: (21, 10, 8, 3, 3, 7) [3, Theorem 3.1];
59 R207: (27, 10, 9, 1, 3, 9) Th. 2.5; n = 9

60 R207a: (28, 10, 6, 3, 7, 4) Th. 2.8 (ii); n = 4

61 R208: (32, 10, 6, 2, 4, 8) Th. 2.4; s = 8

62 R208a: (56, 10, 6, 1, 7, 8) Th. 2.8 (i); n = 8

63 R208b: (49, 10, 1, 2, 7, 7) Unknown, [27]
64 R209: (75, 10, 5, 1, 15, 5) Th. 3.18; g = 5

Q8 is a Quaternion group of order 8 and S3 is the symmetric group of degree
3 and order 6. The balanced generalized Weighing matrices and general-
ized Conference matrices used in the Table 3 may be found in Ionin and
Kharghani [17] and the rgd designs in Table 3 may be found in Clatworthy
[6] and Sinha [32].
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5 Conclusion
Some of the series obtained above may be new as these are not found
in Raghavarao [24], Dey [8, 9], Raghavarao and Padgett [25]. This pa-
per unifies and generalizes some earlier constructions of gd designs. The
paper also provides a short survey on the methods of constructions of
gd designs by matrix approaches. Tables 1, 2 and 3 of srgd and symmetric
rgd designs are presented above along with their methods of construction.
One srgd and five symmetric rgd designs in the range of r, k ≤ 10 could
not be obtained by the above constructions.
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