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Abstract

Given u families A1, ...,Au of subsets of the finite set {1, ..., m},
suppose that the intersection of any s subsets drawn from different
families is non-empty, and the union of any t subsets drawn from
different families is not equal to {1, ...,m}, how big can |A1|+...+|Au|
be? This question is answered in this paper; the answers depend on
s, t, u and m, and are all best possible. Special cases of this problem
were considered in an earlier paper by the present author in 1978.
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1 Introduction

In [6] the present author gave some intersection and union theorems for
several families of subsets of a finite set X. Here we give a more general
theorem which includes all the earlier theorems as special cases.

Very roughly, we impose two kinds of condition, a union condition which
says that the union of t sets drawn from distinct families is never the set
X, and an intersection condition which says that the intersection of s sets
drawn from distinct families is never empty. The question we ask is: if the
families are A1, ...,Au, then how large can |A1|+ ...+ |Au| be? The answer
depends on the values of s, t, u and |X|.

The answers are all analogues of one of the following statements (here a
family A of subsets of {1, ...,m} is intersecting if A1, A2 ∈ A ⇒ A1

⋂
A2 6=

φ and is non-union if A1, A2 ∈ A ⇒ A1

⋃
A2 6= {1, ...,m});

1. A set of m elements has 2m subsets.

2. A maximal intersecting family A of subsets of a set of m elements has
2m−1 subsets (for each pair (A,X\A), exactly one is in A).

3. A maximal intersecting, non-union family of subsets of a set of m ele-
ments has 2m−2 subsets.

The result 3 was conjectured by Brace and Daykin [2] in 1972 and different
proofs were found by Anderson [1], Daykin and Lovász [3], Greene and
Kleitman [4], Schönheim [7], Seymour [8] and Hilton [5]. The proofs in our
main theorem were inspired by Schönheim’s proof and Seymour’s proof.
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2 The main theorem

We prove

Theorem 1. Let A1, . . . ,Au be u families of subsets of the finite set
{1, . . . ,m} = X. Let

Ai1

⋂
Ai2

⋂
. . .

⋂
Ais 6= φ

and
Aj1

⋃
Aj2

⋃
. . .

⋃
Ajt 6= X

whenever {i1, i2, . . . , is} and {j1, j2, . . . , jt} are two subsets of {1, ..., u} with
1 ≤ i1 < i2 < ...is ≤ u and 1 ≤ j1 < j2 < ...jt ≤ u and with Aik ∈ Aik and
Ajl ∈ Ajl for 1 ≤ k ≤ s and 1 ≤ l ≤ t. Let 2 ≤ s ≤ t. Then

I. If s ≤ t ≤ 2s− 1 then

|A1|+ · · ·+ |Au| ≤





u2m for 1 ≤ u ≤ s− 1,

(s− 1)2m for s− 1 ≤ u ≤ 4(s− 1),

u2m−2 for u ≥ 4(s− 1).

II. If 2s− 1 ≤ t then

|A1|+ · · ·+ |Au| ≤





u2m for 1 ≤ u ≤ s− 1,

(s− 1)2m for s− 1 ≤ u ≤ 2(s− 1),

u2m−1 for 2(s− 1) ≤ u ≤ t− 1,

(t− 1)2m−1 for t− 1 ≤ u ≤ 2(t− 1),

u2m−2 for 2(t− 1) ≤ u.

The bound u2m is obtained by letting A1, ...,Au each consist of all 2m sub-
sets of {1, ...,m}. The bound (s− 1)2m is obtained by letting A1, ...,As−1

each consist of all 2m subsets of {1, ...,m}, and letting |As| = |As+1| =
· · · = |Au| = 0. The bound u2m−2 is obtained by letting A1, ...,Au each
consist of all 2m−2 subsets of {1, ...,m} which contain {1} and do not con-
tain {m}. These are the bounds in I. For the bounds in II, the bound u2m−1

for 2(s − 1) ≤ u ≤ t − 1 is achieved by letting A1, . . . ,Au each consist of
all 2m−1 subsets of {1, . . . ,m} containing {1}. The bound (t− 1)2m−1 for
t− 1 ≤ u ≤ 2(t− 1) is achieved by letting A1, . . . ,At−1 each consist of all
2m−1 subsets of {1, . . . ,m} containing {1}, and letting At = . . . = Au = φ.
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In the earlier paper, we proved the following special cases of our Theorem 1.
Theorem 1 of the earlier paper was the special case when s = t. Theorem
2 was the special case when s = 2 and u ≥ t − 1 ≥ 1. Theorem 3 was in
effect the special case when t = 1, u ≥ s− 1 ≥ 1.

3 Three useful lemmas

We shall need the following lemmas. The first was proved in [6], but we
include the proof here to make this account self-contained.

Lemma 2. If 2 ≤ s and 0 ≤ r ≤ 3 · 2m−2 then

(4s− 5){2m−2 − (2
m
2 − (2m−2 + r)

1
2 )2} − r ≥ 0. (1)

Proof. The left hand side of (1) equals

(4s− 5)2m−2 − (4s− 5)2m − (4s− 5)(2m−2 + r) +

+2(4s− 5)2m/2(2m−2 + r)1/2 − r
= −(4s− 5)2m − 4(s− 1)r + 2(4s− 5)2m/2(2m−2 + r)1/2

≥ 0

since

{2(4s− 5)2m/2(2m−2 + r)1/2}2 − {(4s− 5)2m + 4(s− 1)r}2
= 4(4s− 5)2 · 2m · (2m−2 + r)− (4s− 5)222m − 16(s− 1)2r2

− 2(4s− 5)(s− 1) · 4 · 2m · r
= 4r{(4s− 5)2 · 2m − 4(s− 1)2r − 2(4s− 5)(s− 1)2m}
= 4r{(4s− 5)(2s− 3)2m − 4(s− 1)2r}
≥ 4r{(8s2 − 22s+ 15)2m − (3s2 − 6s+ 3)2m}
= 2m+2r(5s− 6)(s− 2)

≥ 0.

Lemma 3. If 2 ≤ 2(s− 1) < t and 0 ≤ r ≤ 3 · 2m−2 then

(2t− 3){2m−2 − (2m/2 − (2m−2 + r)1/2)2} − r ≥ 0.
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Proof. Since 2(s− 1) < t it follows that 2t− 3 ≥ 2(2s− 1)− 3 = 4s− 5, so
by Lemma 2,

(2t− 3){2m−2 − (2m/2 − (2m−2 + r)1/2)2} − r
≥ (4s− 5){2m−2 − (2m/2 − (2m−2 + r)1/2)2} − r
≥ 0.

The third lemma is a theorem of Seymour [8].

Lemma 4. Let A and B be two families of subsets of {1, . . . ,m}, and let
A and B be incomparable (that is, for no A ∈ A and B ∈ B is it true that
A ⊇ B or B ⊇ A). Then

|A| 12 + |B| 12 ≤ 2
m
2 .

4 Proof of the main theorem

Proof of Theorem 1.

We first suppose that s ≤ t ≤ 2s− 1.

If u ≤ s−1 then the intersection condition and the non-union condition are
both vacuous, so it is obvious that the maximum value of |A1|+ ...+ |Au|
is achieved when each of A1, ...,Au consists of all subsets of 2m. Then

|A1|+ · · ·+ |Au| = u2m.

Now suppose that u ≥ s − 1. Suppose that t ≤ u ≤ 4(s − 1). We may
suppose that |A1| ≥ |A2| ≥ · · · ≥ |Au|. Since Ai1

⋂
Ai2

⋂
. . .

⋂
Ais 6= φ

and Aj1

⋃
Aj2

⋃
. . .

⋃
Ajt 6= X whenever 1 ≤ i1 < i2 < · · · < is ≤ u and

1 ≤ j1 < j2 < · · · < jt ≤ u it follows that A1 and Ai are incomparable
whenever i ≥ 2 where Ai = {{1, . . . ,m}\Ai : Ai ∈ Ai}. That is, no set
in A1 contains or is contained by any set in Ai. Therefore by Seymour’s
inequality (Lemma 4),

|A1|1/2 + |Ai|1/2 = |A1|1/2 + |Ai|1/2 ≤ 2m/2 .
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If |A1| ≤ 2m−2 then

|A1|+ · · ·+ |Au| ≤ 4(s− 1)2m−2 = (s− 1)2m

as asserted. So suppose that

|A1| = 2m−2 + r

where 0 ≤ r ≤ 3 · 2m−2. If s ≤ u ≤ 4(s− 1), then

(s− 1)2m − (|A1|+ · · ·+ |Au|)
≥ (s− 1)2m − {2m−2 + r + (u− 1)(2m/2 − (2m−2 + r)1/2)2}
= (4s− 5)2m−2 − (u− 1)(2m/2 − (2m−2 + r)1/2)2 − r
≥ (4s− 5){2m−2 − (2m/2 − (2m−2 + r)1/2)2} − r
≥ 0, by Lemma 2.

We know from the above that if u = s− 1 or u = t then |A1|+ . . .+ |Au| ≤
(s − 1)2m. Suppose now that s − 1 ≤ u ≤ t − 1(≤ 2(s − 1)), and suppose
for a contradiction that |A1|+ . . .+ |Au| > (s− 1)2m. Then, by adjoining
families Au+1, . . . ,At with Au+1 = . . . = At = φ, we would obtain a set
of families A1, . . . ,At satisfying the intersection and non-union rules, and
with |A1|+ . . .+ |At| > (s− 1)2m, contradicting our result above for u = t.

Finally, suppose that u ≥ 4(s− 1). Then, as above, A1 and Ai are incom-
parable for i ≥ 2. Therefore, if |A1| = 2m−2 + r, we have

u2m−2 − (|A1|+ · · ·+ |Au|)
≥ u2m−2 − {2m−2 + r + (u− 1)(2m/2 − (2m−2 + r)1/2)2}
= 2m−2 + (u− 1){2m−2 − (2m/2 − (2m−2 + r)1/2)2} − 2m−2 − r
≥ (4s− 5){(2m−2 − (2m/2 − (2m−2 + r)1/2)2} − r
≥ 0, by Lemma 2.

This completes the proof of I.

Next suppose that 2s−1 ≤ t. The argument to show that |A1|+· · ·+|Au| ≤
u2m when u ≤ s − 1 is the same in this case as in the previous case I.
Now suppose that s − 1 ≤ u ≤ 2(s − 1). We may again suppose that
|A1| ≥ · · · ≥ |Au|. Since Ai1

⋂
Ai2

⋂
. . .

⋂
Ais 6= φ when {i1, .., is} is an

s-subset of {1, ..., u}, it follows that A ∈ As−i ⇒ A /∈ As+i−1 whenever
s+ i− 1 ≤ 2(s− 1). Then at most two of the statements

A ∈ As−i, A ∈ As−i, A ∈ As+i−1, A ∈ As+i−1
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can be true for 1 ≤ i ≤ u− s+ 1, so

|As−i|+ |As+i−1| ≤ 2m.

Therefore
|A2s−u−1|+ · · ·+ |Au| ≤ (u− s+ 1)2m.

But |Aj | ≤ 2m for 1 ≤ i ≤ 2s− u− 2, so we have

|A1|+ · · ·+ |Au| ≤ (u− s+ 1)2m + (2s− u− 2)2m = (s− 1)2m,

as asserted.

Next suppose that 2(s− 1) ≤ u ≤ t− 1. If A ∈ A1 then A /∈ Aj for j > 1,
so |A1|+ |Aj | ≤ 2m. Suppose that |A1| = 2m−1 + r, where 0 ≤ r ≤ 2m−1.
Then

|A1|+ · · ·+ |Au| ≤ 2m−1 + r + (u− 1)(2m−1 − r)
≤ u2m−1 − (u− 2)r

≤ u2m−1.

Next suppose that (t− 1) ≤ u ≤ 2(t− 1). If u = t− 1 then, as just above,

|A1|+ · · ·+ |Au| ≤ u2m−1 = (t− 1)2m−1.

It is convenient to consider the case when t − 1 ≤ u ≤ 2(t − 1) in further
detail after the next case (but note that there is no circularity of argument
since we do not use the result for t− 1 ≤ u ≤ 2(t− 1) in proving the next
case).

Next suppose that u ≥ 2(t − 1). If |A1| ≤ 2m−2 then |A1| + · · · + |Au| ≤
u2m−2 as asserted. So suppose that |A1| = 2m−2 + r for some r, 0 ≤ r ≤
3 · 2m−2. Then, as above, A1 and Ai are incomparable and we have

|A1|1/2 + |Ai|1/2 = |A1|1/2 + |Ai|1/2 ≤ 2m/2,

so
|Ai| ≤ (2m/2 − (2m−2 + r)1/2)2.

Therefore

u2m−2 − {|A1|+ · · ·+ |Au|}
≥ u2m−2 − {2m−2 + r + (u− 1)(2m/2 − (2m−2 + r)1/2)2}
= 2m−2 + (u− 1){2m−2 − (2m/2 − (2m−2 + r)

1
2 )2} − 2m−2 − r

≥ (2t− 3){2m−2 − (2m/2 − (2m−2 + r)
1
2 )2)} − r

≥ 0, by Lemma 3.
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Finally suppose that (t− 1) ≤ u ≤ 2(t− 1). Note that, from just above, if
u = 2(t− 1) then |A1|+ · · ·+ |A2(t−1)| ≤ 2(t− 1)2m−2 = (t− 1)2m−1. If for
some u, t−1 ≤ u ≤ 2(t−1) we had A1, ...,Au satisfing the intersection rule
but with |A1|+ · · ·+ |Au| > (t− 1)2m−1 = (t− 1)2m−1, then, by adjoining
Au+1, ...,A2(t−1) with |Au+1| = · · · = |A2(t−1)| = 0, we would have 2(t− 1)
families satisfying the intersection rule but with |A1| + · · · + |A2(t−1)| >
(t− 1)2m−1, a contradiction. Therefore

|A1|+ · · ·+ |Au| ≤ (t− 1)2m−1

in this case.

This completes the proof of II.

What happens in the case not considered in Theorem 1 where t < s? This
is easy to find by taking complements. We obtain:

Theorem 5. With m, u, s and t defined as in Theorem 1, suppose that
2 ≤ t ≤ s. Then

I. If t ≤ s ≤ 2t− 1, then

|A1|+ · · ·+ |Au| ≤





u2m for 1 ≤ u ≤ t− 1,

(t− 1)2m for t− 1 ≤ u ≤ 4(t− 1),

u2m−2 for u ≥ 4(t− 1).

II. If 2t− 1 ≤ s then

|A1|+ · · ·+ |Au| ≤





u2m for 1 ≤ u ≤ t− 1,

(t− 1)2m for t− 1 ≤ u ≤ 2(t− 1),

u2m−1 for 2(t− 1) ≤ u ≤ s− 1,

(s− 1)2m−1 for s− 1 ≤ u ≤ 2(s− 1),

u2m−2 for 2(s− 1) ≤ u.

Proof. Suppose that 2 ≤ t ≤ s. Since

Ai1

⋂
Ai2

⋂
. . .

⋂
Ais 6= φ

it follows that
Ai1

⋃
Ai2

⋃
. . .

⋃
Ais 6= X
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and since
Aj1

⋃
Aj2

⋃
. . .

⋃
Ajt 6= X

it follows that Aj1

⋂Aj2

⋂
. . .

⋂Ajt 6= φ. Since

|Ai| = |{A : A ∈ Ai}| = |{A : A ∈ Ai}|,
we can interchange t and s in the bounds found in Theorem 1 to find the
correct bounds in this theorem.

5 Further remarks

We could extend this study to a more general extremal problem. Sup-
pose that A1, . . . ,Au are families of distinct subsets of {1, 2, . . . ,m}. Let
g(u, h, k, s, t,m) be the maximum value of

|A1|+ |A2|+ . . .+ |Au|
in the case where

|Ai1 ∩Ai2 ∩ . . . ∩Ais | ≥ h
and

|Aj1 ∩Aj2 ∩ . . . ∩Ajt | ≤ m− k
whenever i1, i2, . . . , is are distinct subscripts from {1, 2, . . . , u} and Ail ∈
Ail (1 ≤ l ≤ s), and similarly j1, j2, . . . , jt are distinct subscripts from
{1, 2, . . . , u} and Ajl ∈ Ajl (1 ≤ l ≤ t).

Theorem 1 of [6] is the special case of our Theorem 1 when s = t. We would
like to suggest the following generalization of Theorem 1 of [6]. Theorem 1
of [6] is the special case of the conjecture when h = 1.

Conjecture 6. Let m, h, u and s be positive integers with u ≥ s ≥ 1. Let
A1, ...,Au be u families of distinct subsets of {1, ...,m} such that

|Ai1

⋂
...
⋂
Ais | ≥ h

and
|Ai1

⋃
...
⋃
Ais | ≤ m− h

whenever i1, ..., is are distinct subscripts from {1, ..., u} and Aij ∈ Aij (1 ≤
i ≤ s). Then

|A1|+ · · ·+ |Au| ≤





u2m for u ≤ s− 1 ,

(s− 1)2m for s− 1 ≤ u ≤ 22h(s− 1) ,

u2m−2h for u ≥ 22h(s− 1) .
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In other words, we conjecture that

g(u, h, h, s, s,m) =





u2m for u ≤ s− 1 ,

(s− 1)2m for s− 1 ≤ u ≤ 22h(s− 1) ,

u2m−2h for u ≥ 22h(s− 1) .

Acknowledgement. I would like to thank William Raynaud and the
referee for numerous small improvements to the exposition and for the
removal of several minor errors.
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