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Abstract:  The dimension of a block design is the maximum positive
integer d such that any d of its points are contained in a proper subdesign.
Pairwise balanced designs PBD(v, K') have dimension at least two as long as
not all points are on the same line. On the other hand, designs of dimension
three appear to be very scarce. We study designs of dimension three with
block sizes in K = {3,4} or {3,5}, obtaining several explicit constructions
and one nonexistence result in the latter case. As applications, we obtain
a result on dimension three triple systems having arbitrary index as well
as symmetric latin squares which are covered in a similar sense by proper
subsquares.

1 Introduction

Let v be a positive integer and K C {2,3,4,...}. A pairwise balanced
design PBD(v, K) is a pair (X, B), where X is a v-set of points and B is a
family of blocks such that

e for each B € B, we have B C X with |B| € K; and

e any two distinct points in X appear together in exactly one block.

*Corresponding author.
AMS (MOS) Subject Classifications: 05B05, 05B07, 51E20
Key words and phrases: block designs, dimension, Steiner spaces, triple systems,
latin squares

Received: 19 July 2019 35
Accepted: 19 August 2019



These objects are also sometimes known as ‘linear spaces’, where blocks
assume the role of lines.

There are arithmetic conditions on v in terms of the set K. If we define
a(K) :=ged{k —1: k € K} and B(K) := ged{k(k — 1) : k € K}, then
elementary counting arguments show

v—1=0 (mod a(K)), and (1.1)
v(v—1)=0 (mod B(K)). (1.2)

Wilson’s theory, [8], establishes that (1.1) and (1.2) are sufficient for large
v.

In a PBD (X, B), a subdesign is a pair (Y,By), where Y C X and By :=
{B € B: B C Y}, which is itself a pairwise balanced design. Subdesigns
are also called flats, especially in the context of linear spaces, and this is
the term we mainly use in what follows.

The set of flats in (X, B) form a lattice under intersection. So any set
of points S C X generates a flat, which we denote by (S), equal to the
intersection of all flats containing S. We sometimes abuse notation and
put a list of elements inside angle brackets. For z € X, we have (z) = {z}
and for z,y € X with © # y, we have that (x,y) is the unique block
containing = and y. Since our sets here are finite, one can think of (S) as
the limit of the chain S = Sy C Sy C Sy C ---, where S;11 = Uy yes, (2, 9)
for i > 0.

The dimension of a PBD is the maximum integer d such that any set of
d points generates a proper flat. Any PBD has dimension at least two,
provided that not all points are on the same block. See [3] and [1, Chapter
7] for a discussion of dimension in the context of linear spaces.

The points and lines of either the affine space AG4(q) or projective space
PGy(q) afford designs with dimension d. The parameters are special:

AG4(q) leads to a PBD(¢?, {q})
and
qd+1 -1
PGy(q) leads to a PBD(17 {g+ 1})
q—
More generally, the second author and A.C.H. Ling showed in [4] that,
given K and d, the arithmetic conditions (1.1) and (1.2) are sufficient for

existence of a PBD(v, K) of dimension at least d for v > vo(K, d).
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A Steiner triple system is a PBD(v,{3}). It is well known that a Steiner
triple system on v points exists if and only if v = 1 or 3 (mod 6). A
Steiner space is defined to be a Steiner triple system of dimension at least
3. Teirlinck in [7] studied the existence of Steiner spaces, finding that, for
v & {51,67,69,145}, they exist if and only if v = 15,27,31,39, or v > 45.
The four undecided cases are still open, to the best of our knowledge.

Dukes and Niezen [5] obtained a nearly complete existence theory for the
case K = {3,4,5} and dimension 3. Note that a(K) = 1 and S(K) =
2 in this case, so (1.1) and (1.2) disappear and all positive integers are
admissible.

Theorem 1.1 ([5]). There exists a PBD(v,{3,4,5}) of dimension three
if and only if v = 15 or v > 27 except for v = 32 and possibly for v €
{33,34,35,38,41,42,43,47}.

Here, we consider the cases K = {3,4} and K = {3,5}, obtaining two
results of a similar style.

Theorem 1.2.

(a) Forv=0,1 (mod 3), there exists a PBD(v,{3,4}) of dimension three
if and only if v =15 or v > 27, except possibly for v € { 33, 34, 42,
43, 54, 69, 70, 72, 78 }.

(b) For odd integers v, there exists a PBD(v,{3,5}) of dimension three if
and only if v =15 or v > 27, except for v = 33 and possibly for
v e {35, 37, 41, 43, 47, 51 }.

Note that as a result of [5, Theorem 7.1], it is enough to obtain construc-
tions for dimension at least 3, since that result facilitates the reduction of
dimension.

The outline of the paper is as follows. Section 2 reviews some background
useful for our constructions. Section 3 gives constructions of various designs
for Theorem 1.2 not already covered by earlier work. In Section 4, we
provide a nonexistence result for a dimension three PBD(33,{3,5}). As an
application of Theorem 1.2, we obtain a nearly complete existence theory
for dimension three triple systems of general index A, i.e. 3-uniform set
systems in which any two distinct points are together in exactly A blocks.
Another application is the construction of symmetric latin squares which
are covered by proper subsquares. These are given in Section 5.
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2 Background

We begin by stating the basic existence result for PBDs having block sizes
in K = {3,4,5},{3,4}, or {3,5}. Proofs and more information can be
found in [2].

Theorem 2.1.
(a) There exists a PBD(v,{3,4,5}) if and only if v # 2,6, 8.
(b) Forv=0,1 (mod 3) there exists a PBD(v,{3,4}) if and only if v # 6.
(¢) For all odd v there exists a PBD(v,{3,5}).

For what follows, we recall the structure of PBD(v, K) with K C {3,4,5}
and small v. The unique such PBDs for v = 7 and 9 are the ‘Fano plane’
PG2(2) and the affine plane AGy(3), respectively; in these cases all blocks
have size three. The unique PBD with v = 10 arises from the extension of
one parallel class in AG2(3). The extended blocks have size four. The only
PBD, up to isomorphism, for v = 11 has one block of size five and all other
blocks of size three.

A group divisible design (GDD) is a triple (X,II, B), where X is a set of
points, 11 is a partition of X into groups, and B is a set of blocks such that

e a group and a block intersect in at most one point; and

e any two points from distinct groups appear together in exactly one
block.

To specify a set K of allowed block sizes, we use the notation K-GDD. The
type of a GDD is the list of its group sizes. When this list contains, say,
u copies of the integer g, this is abbreviated with ‘exponential notation’ as

u

qg.

We remark that a K-GDD of type 1" is just a PBD(v, K'). More generally,
if a PBD(v, K) has a partition into subdesigns, which may be singletons
or blocks, then they can be removed and turned into groups to produce
a K-GDD on v points. Or, a GDD can be constructed from a PBD by
deleting a point x and all its incident blocks.

We now review some standard design-theoretic constructions. First, we can
‘fill’ the groups of a GDD with PBDs.

Construction 2.2 (Filling groups). Suppose there exists a K-GDD on v
points with group sizes in G. If, for each g € G:
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e there exists a PBD(g, K), then there exists a PBD(v, K);
e there exists a PBD(g+ 1, K), then there exists a PBD(v+ 1, K); and

e there exists a PBD(g + h, K) containing a flat of order h, then there
exists a PBD(v + h, K).

From a PBD or GDD, one may truncate a subset A C X, replacing blocks
B € B by new blocks B \ A (and ignoring blocks of size 0 or 1.) For our
applications of truncation, we want to avoid blocks of size two.

The next construction builds larger GDDs from smaller ones.
Construction 2.3 (Wilson’s fundamental construction). Suppose there ex-
ists a ‘master’ GDD (X,I1,B), where 11 = {X1,...,X,}. Letw : X —
{0,1,2,...}, assigning nonnegative weights to each point in such a way
that for every B € B there exists an ‘ingredient’ K-GDD of type w(B) :=
[w(z) | x € B]. Then there exists a K-GDD of type

reX, zeEX,

REMARK. Truncation can be viewed as a special case of Construction 2.3,
where weights in {0,1} are used and the ingredients are simply blocks or
shortened blocks.

Later, we use various small GDDs as ingredients in the above construction.
The following can be easily found by truncating points from known designs
and/or turning disjoint blocks into groups.
Lemma 2.4 (see also [6, 7]). The following group divisible designs exist:
(a) 3-GDDs of types 23, 33, 35, 43, 2% 4% 2143 and 234';
(b) {3,4}-GDDs of types 3*, 2331, 2133, 3341, 3143 and 2*3%;
(c) {3,5}-GDDs of types 2° and 1°35~¢ for each i € {0,1,...,5}.

Let us call a weighting of points w : X — Z>( nondegenerate if the points
of nonzero weight are contained in no proper flat.

Proposition 2.5 ([4, 5]). Suppose a nondegenerate weighting is applied to
a PBD (X,B) of dimension d. The result of Wilson’s fundamental con-
struction is a GDD of dimension at least d. Moreover, any set of d points
are contained in a proper sub-GDD that intersects each group in zero or all
points.
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Observe that if we have a GDD satisfying the conclusion of Proposition 2.5,
then filling groups as in Construction 2.2 results in a PBD of dimension d. A
typical construction sequence begins with a PBD, applies Construction 2.3
with some weights to produce a GDD, and finishes with Construction 2.2
to produce a new PBD. If the input PBD has dimension three and the
weighting is nondegenerate, then the resultant PBD has dimension three.

3 New constructions

Since Steiner spaces qualify for both of the sets of block sizes we are
considering, we need not construct designs with v = 1,3 (mod 6), where
v = 15,27,31,39, or v > 45, unless v is in the set of possible exceptions
{51,67,69,145}. In this section we consider most of the remaining values of
v, relying on truncations and weightings of the affine and projective spaces,
appealing to Construction 2.3.

3.1 Block sizes in K = {3,4}

We divide the unsettled values for Theorem 1.2(a) into several propositions,
organized by construction method. Recall that v = 0,1 (mod 3) in this
case.

First, we obtain all but finitely many values of v directly from the case
K ={3,4,5}.

Proposition 3.1 (see also [5]). There exists a PBD(v,{3,4}) of dimension
three for v € { 45, 46, 81, 82, 84, 85, 87, 88, 90, 91, 93, 94, 108, 109, 111,
112, 117, 118, 120, 121, 132, 133, 135, 136, 138, 139 } and all v > 144.

Proof. If we give weight 3 to a PBD(u, {3,4,5}) of dimension three, add
zero or one point, and replace blocks with {3,4}-GDDs of type 33, 34, 35,
the result is, after filling groups, a PBD(v, {3,4}) with v = 3u or 3u + 1.
The result then follows from Theorem 1.1. L]

To realize the largest remaining values, we weight truncations of the pro-
jective space PGs(4).
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Proposition 3.2. There exists a PBD(v,{3,4}) of dimension three for all
v € {114,126,130, 142}.

Proof. We work from PGs(4), a PBD(85,{5}) of dimension three. To get
v = 114 and 126, truncate all but 3 collinear points or a Fano subplane
from one plane PGs(4), and all but 4 collinear points of another plane.
Give weight 3 to the points remaining in the first plane, and weight 2 to all
other points. Apply Construction 2.3, using {3,4}-GDDs of types 23, 33,
24,2331, 243! as ingredients (see (a) and (b) of Lemma 2.4). Add one point
and fill groups with blocks incident at this point as in Construction 2.2. For
the other values we start with AG3(4), a PBD(64, {4}) of dimension three
(and truncation of the projective space above). For v = 130, give all points
weight 2 except one which we give weight 3 and use ingredient GDDs as
above. For 142, give all but 3 collinear points of some plane weight 3, and
all remaining points weight 2. This time we also use an ingredient GDD of
type 2'33. Again, add a point and fill the groups. O

We also obtain a PBD(124, {3,4}) of dimension three by giving weight 4 to
a Steiner space of order 31.

Proposition 3.3. There exists a PBD(124,{3,4}) of dimension three.

Four more orders can be constructed from weightings of PG3(3).

Proposition 3.4. There exists a PBD(v,{3,4}) of dimension three for all
v € {96,100,102,106}.

Proof. Start with PG3(3), a PBD(40, {4}) of dimension three. The points
can be partitioned into a copy of AG3(3) and a plane PG2(3). Give each
of the 27 points of the affine space weight 3. In the plane, give 1, 3, or 4
collinear points weight 0, and all other points weight 2. Apply Construc-
tion 2.3 using {3,4}-GDDs of types 23, 33, 24, 2133 as ingredients. To the
resulting GDDs, add a point and fill groups with blocks of size 3 or 4. This
gives the largest three values. For v = 96, truncate from PGs(3) all points
of a plane except those on one line ¢. Give all points weight 3, except three
of the points on ¢, which are given weight 4, using {3,4}-GDDs of types 33,
3%, 3341, 3143 as ingredients (see Lemma 2.4). Finally, turn groups of the
resulting GDD into blocks. O

Several smaller values come from truncations of projective and affine spaces
of dimension three.
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Proposition 3.5 ([5]). There ezists a PBD(v,{3,4}) of dimension three
for v € {28,30,31, 36,37, 39,40,60,61,63,64}.

There are now only seven values left to consider before completing the proof
of Theorem 1.2(a). We get v € {48,51,52} as in Niezen’s thesis [6], by
truncating planes from PGs(4). The remaining four values are considered
in the following proposition.

Proposition 3.6. There exists a PBD(v,{3,4}) of dimension three for
v € {58,66,67,76}.

Proof. We first consider v = 76. Start with PG3(3) and truncate 3 collinear
points. Give the remaining point from that block weight 3 and all other
points weight 2. Apply Construction 2.3 using {3,4}-GDDs of types 23,
24, 233! as ingredients. To finish the construction, add a point and fill the
groups with blocks of size 3 or 4. For the smaller three values, truncate all
but 1 or 4 collinear points from a plane, giving all points weight 2 except
for the single point, or 3 or 4 of the 4 points, which will get weight 3. Apply
Wilson’s Fundamental Construction again, using the same ingredients as
before, as well as possibly type 2'33. The resulting GDDs have 57, 65 or 66
points and groups sizes in {2, 3}, which are to be filled as before. O

3.2 Block sizes in K = {3,5}

We now move on to Theorem 1.2(b). In what follows we consider only odd
integers v. In fact, for v > 45, v ¢ {51,67,69, 145}, we actually only need
to consider the congruence class v =5 (mod 6), as Steiner spaces cover the
other possibilities.

As before, we split the proof into a few separate constructions. First, all
but finitely many cases can be handled as in Proposition 3.1, where weight
2 and ingredient {3,5}-GDDs of type 23, 2* and 2° are used.

Proposition 3.7 (see also [5]). There exists a PBD(v,{3,5}) of dimension
three for v = 29,59, and all odd v > 97.

A range of orders can be constructed by weighting PG3(3) and PG3(4).

Proposition 3.8. There exists a PBD(v,{3,5}) of dimension three for all
v € {65,67,69,71,77,83}.
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Proof. Start with PG3(3), a PBD(40, {4}) of dimension three. To get the
larger two values, truncate 0 or 3 collinear points giving exactly one point
weight 4 (the remaining point from the truncated line in the latter case),
and all other points weight 2. Apply Construction 2.3, using 3-GDDs of
types 23, 24, 234! from Lemma 2.4 as ingredients. Add a point and fill
groups with blocks at this new point. For the smaller values, truncate all
but three or four collinear points of a plane. If three, give these points
weight 4 and all others weight 2. If four, give one, three, or all of these
four points weight 4, and the rest weight 2. Apply Wilson’s Fundamental
Construction again, using the same ingredient GDDs, as well as possibly 3-
GDDs of types 43, 4% and 2'43. Add a point and fill groups with blocks. [

Proposition 3.9. There exists a PBD(v,{3,5}) of dimension three for
v =89 and 95.

Proof. Start with PG3(4), a PBD(85, {5}) of dimension three. Give i points
weight 3, and the rest of the points weight 1 for ¢ € {2,5}. Apply Con-
struction 2.3 with ingredients from Lemma 2.4(c). Turning the groups of
size three into blocks completes the proof. O

The only remaining value to consider here is v = 53, which is handled by a
truncation.

Proposition 3.10. There exists a PBD(53,{3,5}) of dimension three.

Proof. Truncate two planes from PG3(4), leaving behind only their common
block. This leaves blocks of size 3 across the remaining three planes, and
blocks of size 5 within the remaining planes. The result is a PBD(v, {3,5})
with v = 85 — 2 x 16 = 53 points. O

This completes our constructions of PBDs of dimension three with block
sizes in {3,4} and {3,5}. Theorem 1.2 is proved except for nonexistence in
the case v = 33, K = {3,5}, which we address in the next section.

4 Nonexistence

The second author and Niezen showed in [5] the nonexistence of PBDs of
dimension three with block sizes in {3,4,5} for v = 32, and all v < 27,v #
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15. Since both sets of block sizes considered in this paper are subsets of
{3,4,5}, the nonexistence results from [5] carry over to our work. In this
section we add to those results the nonexistence of a PBD(33,{3,5}) of
dimension three. The proof relies on a well-known upper bound for the size
of proper flats in a design. In what follows, we say that a block ‘touches’ a
flat when it intersects that flat in a single point. A proof of the following
can be found in [5].

Lemma 4.1. In a PBD(v,Z>3) with a proper flat W of size w, we have
v > 2w+ 1, with equality if and only if every block intersects W, and all
blocks which touch W have size exactly three.

Consider any block B in a PBD, say (X, B), of dimension at least three.
For each € X \ B, the flat F,, = (B, z) is proper in X, and hence these
flats partition the points in X \ B. By deleting B and these flats we get a
GDD whose groups partition is {F, \ B : z € X}. This observation is used
repeatedly in our structural arguments to follow.

Proposition 4.2. There does not exist a PBD(33,{3,5}) of dimension
three.

Proof. Suppose, for contradiction, that such a design exists. Teirlinck
showed in [7] the nonexistence of a Steiner space of order 33, so our design
necessarily has a block of size 5, say B. The smallest {3, 5}-PBD containing
a block of size 5 has order 11. So, it follows from this and Lemma 4.1 that
B can only be in flats of sizes 15,13, or 11. This leaves us with only two
possible GDD types upon deleting B and its incident proper flats, namely
6282 and 6310'. To eliminate the first case notice flats of size 11 contain
exactly one block of size 5, and a flat of size 13 containing a block of size
5 contains exactly three. This gives that the design arising from the GDD
of type 6282 has exactly five blocks of size 5, which is not possible since we
need the number of blocks of size 5 to be a multiple of 3. The second case
requires much deeper analysis.

Consider a flat Y of size 15 containing B, and hence containing at least
three blocks of size 5. The block B induces a partition {4y, As, A3} of
X \Y into three 6-subsets according to the flats of order 11 containing B.
Consider a different block B’ of size 5 in Y. It induces another such partition
{4}, A}, AL}, The unique structure of PBD(11, {3,5}) forces every block
of size three in these flats to have exactly one point of B and two points in
X \'Y. So for any i and j, we have [A4; N A}| < 2, or else the flats A; U B
and A; U B’ would overlap in too many points. It follows from counting
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that [4; N A%| = 2, and the 18 points of X \ Y fall into three ‘rows’ and
three ‘columns’ containing six points each, as shown in Figure 1. Without
loss of generality, a third block B” of size 5 can only induce a partition
running across these as three ‘diagonals’. So B, B’ and B” intersect in a
common point, say co. And we see that more than three (hence at least six
for divisibility) blocks of size 5 in Y is impossible, since there is not enough
room for the flats of size 11 from these blocks.

AL A, A e )
Al . [ ] . [ ] . [ ]
A2 . [ ] . L] . o
Bs
A3 . [ ] . [ ] . [ ]
B B’ B” Y
-

Figure 1: Structure in a hypothetical PBD(33, {3,5}) of dimension three.

We know, then, that the flat Y has three blocks B, B’, B” of size 5 and one
block of size 3, say, Bs, all containing co. Notice that oo induces a partition
on the 18 points outside Y into nine pairs. Any flat containing one of these
groups must also then contain the point co. Also, each point in a block of
size 5 contributes 9 pairs between the 18 external points, giving a total of
9 x 13 = 117 external pairs covered, leaving 36 remaining.

Consider Bs and its incident proper flats. There are three possible combi-
nations of flats (other than Y') incident with Bs: three flats of size 9, three
of size 7 and one of size 9, or one of size 13 and two of size 7. We show
that only the first possibility can occur. Since the three blocks of size five
cover the ‘rows’, ‘columns’, and one class of ‘diagonals’, we’re left to cover
36 pairs along the ‘back diagonals’ with Bs. It follows that in a flat of size
7 with Bj3 the other four points arrive as two of the pairs induced by oo,
aligning on the back diagonals. Considering three flats of size 7, we are
left with three of the pairs, one from each back diagonal line, together in
the flat of size 9 with Bs, such a structure necessarily covers pairs already
covered with blocks of size five. This eliminates the second case. For the
third case, a flat of size 13 would cover (120) —10/2 = 40 > 36 new pairs in
X \ 'Y, and hence this case is not possible either.
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It remains to show that when Bz belongs to three flats of size 9 that such
a design fails to have dimension three. Take any point x € Bs, x # o©.
Consider the flat generated by x, a point y # oo on a block of size 5, and
a point z outside Y. The size of this flat is an odd integer at least 7. Since
we can partition X \ Y based on which flat a point generates with  and
y, we have the cases of a flat of size 13 and two flats of size 7, three of size
7 and one of size 9, or three of size 9. In the first case, a flat of size 13 can
intersect Y in exactly one block (z,y), leaving 10 external points. By the
pigeonhole principle, some two of them are in a triple with co, and thus
(x,y, z) is the whole space. For the other two cases, suppose (x,y, z) has
size 9. This flat, being a copy of AG2(3), contains a line ¢ of three points in
X \ Y. Therefore, ¢ is contained in an AG3(3) with Bs, hence oo is again
generated and our subsystem (z,y,z) is not proper. This completes the
proof. O

We are unable to exclude the possibility of a PBD(35,{3,5}) of dimension
three, but if one exists then deleting a block B of size 5 induces a {3,5}-
GDD of one of the following types: 6°, 836, 1018162, 1262 or 103. This
list can be reduced slightly with deeper analysis.

We can quickly discard the 10'8'62 case, as such a design would have five or
eight blocks of size 5, contradicting that the number of such blocks must be
1 (mod 3). Additionally, using structural arguments on flat intersections
it is possible to show flats of size 15 can only occur having three pairwise
disjoint blocks of size 5. Consider now the 836! case. The flats of size 13
require more blocks of size 5. These, it can be shown, must intersect in a
single point, say co, on B. Let x be another point on a different block of
size 5, let y be in the group of size 6, and consider the flat Y = (o0, z, y).
For Y to be proper, we must have 11 < |Y| < 17 and also Y N B = {oo}.
But then there is no way to allocate the points of Y to flats induced by
the GDD without more than one block occurring in one of these flats. This
eliminates the 836! case.

For the still open possible types 103, 6° or 12!62, perhaps some new ideas
could either eliminate these three cases or lead to a construction.
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5 Applications

5.1 Triple systems of general index

A balanced incomplete block design BIBD(v, k, A), or simply (v, k, \)-design
is a pair (X, B), where X is a v-set of points and B is a family of blocks
where

e for each B € B, we have B C X with |B| = k; and

e any two distinct points in X appear together in exactly A blocks.

The parameter A is often called the indexr of the design. As with pair-
wise balanced designs, there are divisibility conditions on the parameters
of BIBDs. The existence of a (v, k, A)-design implies

AMv—1)=0 (mod k—1), and (5.1)
A —1)=0 (mod k(k —1)). (5.2)

In the case k = 3, conditions (5.1) and (5.2) are equivalent to Amin | A,
where

ifv=1or3 (mod6),

ifv=0o0r4 (mod 6),

ifv=5 (mod 6),

ifv=2 (mod 6).

In this section we generalize Steiner spaces by considering the cases A €
{2,3,6}, which by the above remarks essentially settles all values of \ via
taking ‘copies’ of the block family of a (v, 3, Amin) design. Before considering
these designs further, we should clarify our definition of dimension. A
subdesign in a (v, k, A)-design (X, B) is a pair (Y, By ), where Y C X and
By := {B € B: B C Y}, which is (w,k,A)-design with w < v. With
‘subdesign’ replacing ‘flat’; the notion of dimension extends naturally to
the setting of general \; that is, the dimension equals the maximum integer
d such that any set of d points are contained in a proper subdesign.

)\min =

S W N =

In the case k =3 and A = 2, (5.1) and (5.2) become v = 0,1 (mod 3), the
same necessary conditions for a PBD(v, {3,4}). Now, suppose we take a
PBD(v, {3, 4}) of dimension three, and repeat each block of size 3 twice, and
replace blocks of size 4 with (4,3, 2)-designs. The result is then a (v, 3,2)-
design of dimension three. Hence, our existence results for PBD(v, {3,4}) of
dimension three imply the existence of (v, 3, 2)-designs of dimension three.
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Likewise, for A = 3 one has the same necessary conds. as for PBD(v, {3,5}),
namely that v be odd. A construction follows from PBD(v, {3,5}) similar
to the above, where we repeat each block of size 3 three times, and replace
blocks of size 5 with (5,3,3)-designs. For A = 6, all positive integers are
eligible; we use a PBD(v, {3,4,5}) this time, replacing each block of size
k with a (k,3,6)-design. This, along with Theorem 1.1 and Theorem 1.2
gives us the following existence results.

Proposition 5.1.

(a) Forv=0,1 (mod 3), there exists a (v, 3,2)-design of dimension three
forv =15 and all v > 27 except possibly for v € { 33, 34, 42, 43, 54,
69, 70, 72, 78 }.

(b) For odd integers v, there exists a (v,3,3)-design of dimension three
for v =15 and all v > 27 except possibly for v € { 33, 35, 37, 41, 43,
47, 51 }.

(¢) There exists a (v,3,6)-design of dimension three for v = 15 and all
v > 27 except possibly for v € { 32, 33, 34, 35, 38, 41, 42, 43, 47 }.

Since v determines the allowed values of A, and since we may take copies
while preserving dimension three, we obtain existence of (v, 3, \)-designs of
dimension three whenever Ay, | A, unless v is in the union of the lists of
possible exceptions above. Nonexistence in some small cases follows from
nonexistence of the corresponding PBDs.

Proposition 5.2. There does not exist a (v, 3, X)-design of dimension three
forv < 27,v # 15.

Proof. Consider a hypothetical (v, 3, A)-design of dimension three with v <
27,v # 15. By Lemma 4.1 (which holds for general A by an analogous
proof), any proper subdesign has size at most 252—_1 = 12. In the same
way, since our design has dimension three, any subdesign generated by two
points has at most L%J = 5 points. Now, any two of these two-point-
generated subdesigns which are not equal intersect in at most one point.
So, if we replace every such subdesign with a single block, the result is a
PBD(v,{3,4,5}) of dimension three. This contradicts Theorem 1.1. O

We can additionally eliminate two more cases with some extra analysis.

Proposition 5.3. There does not exist a (33,3, \)-design of dimension
three with odd A.
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Proof. Consider a hypothetical such design (X, B). Arguing as in the proof
of Proposition 5.2, two-point-generated subdesigns have size at most 7.
Since A is odd, (5.1) leaves only the possibilities 3,5, 7. Suppose two points
x and y generate a subdesign (Y, By') of size 7. The points of X \ Y fall into
distinct subdesigns of the form (Y, z), z € X \ 'Y, all of which necessarily
have size 15. But this is impossible as 33 — 7 = 26 is not a multiple of
15 — 7 = 8. Tt follows that there is no subdesign of size 7 generated by
two points. We now proceed as in the proof of Proposition 5.2, getting a
PBD(33,{3,5}) of dimension three and contradicting Proposition 4.2. [

Proposition 5.4. There does not exist a (32,3, \)-design of dimension
three.

Proof. Again, suppose (X, B) is such a design. Possible sizes for two-point-
generated subdesigns are 3,4,5,6,7. The possibility of a subdesign of size
7 is eliminated by a similar analysis as in the proof of Proposition 5.3.
Suppose two points x and y generate a subdesign (Y, By) of size 6. The
points of X \ Y are partitioned by the subdesigns (Y, z), z € X \ Y, which
have sizes in {13,14,15}. We therefore require a solution to 26 = 7a +
8b + 9c, the only one in nonnegative integers being a = 0,b = 1,¢ =
2. This is not feasible by a counting argument. Therefore there is no
subdesign of size 6 generated by two points. Now we again proceed as in
the proof of Proposition 5.2, getting a PBD(32, {3,4,5}) of dimension three
and contradicting Theorem 1.1. O

We summarize the results of this section in Table 1, for which we assume
Amin | A

number of points existence | nonexistence
ved.., 14,16,...,26,32} — any A

v =233 ? odd A

v =51 2] A ?

v =69 3 A ?

v € {34,35,37,38,41,43,47,70, 72, 78} ? ?
otherwise any A —

Table 1: Status of (v, 3, A)-designs of dimension three.

Triple systems of dimension three which are simple (have no repeated
blocks) can be constructed for sufficiently large v from various PBD(v, K)
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of dimension three, where K is chosen carefully to avoid the need for re-
peated blocks. For instance, simple (v, 3, 2)-designs of dimension three exist
for all sufficiently large v = 0,1 (mod 3) by taking K = {4, 6,7}, where the
needed PBD of dimension three exists by the main result of [4]. Similarly,
we could take K = {5, 7} for simple (v, 3, 3)-designs. At this time, however,
we have no explicit bound on v for existence of such PBDs of dimension
three.

5.2 Idempotent symmetric latin squares

A latin square of order n is an n X n array on n symbols such that every
row and every column is a permutation of the symbols. A latin square L
is symmetric if L;; = Lj; for any indices 7 and j. We may assume the set
of symbols (and row/column indices) is [n] := {1,...,n}. A latin square is
idempotent if the entry in diagonal cell (4,1%) is ¢ for each i € [n].

Idempotent symmetric latin squares can be constructed as ‘back circulants’
for all odd integers n. Examples for orders 3 and 5 are shown below.

1 4 2 5 3
1 3 2 4 2 5 3 1
3 2 1 25 31 4
2 1 3 5 3 1 4 2
31 4 2 5

A (latin) subsquare is a sub-array which is itself a latin square. Note that
such a sub-array need not be on a contiguous set of rows and columns. For
instance, if H < G are finite groups, the operation table of H is a latin
subsquare of the operation table of G.

Idempotent latin squares can be joined using a PBD. In more detail, sup-
pose we have a PBD(n, K), where K C Zx3. For every block B, let L” be
an idempotent latin square on the symbols of B. Then we obtain an n x n
idempotent latin square L, defined by

L= b =g (5.3)
Y LB, i+ j letting B be the block for which {i,5} C B. ’

179

Using this construction in conjunction with Theorem 1.1, it was shown
in [5] that for n > 48 there exists an idempotent latin square of order n
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having the property that any row, column and symbol appear together in
a proper latin subsquare. We note the following similar consequence of
Theorem 1.2(b) for symmetric latin squares having the same property.

Theorem 5.5. There exists an idempotent symmetric latin square of order
n in which any choice of row, column, and symbol is contained in a proper
latin subsquare if n is odd, n > 27 and n & {33,35,37,41,43,47,51}.

Proof. Given an integer n satisfying the stated conditions, take a

PBD(n,{3,5}) from Theorem 1.2(b). Build a latin square L of order n
as in (5.3), where we use the ingredient squares of orders 3 and 5 above.
Since these ingredients are symmetric, so is L. The choice of any row,
column, and symbol of L amount to a selection of three points of the PBD.
By assumption, these are contained in a proper flat, say Y. Then the
restriction of L to rows, columns and symbols indexed by Y is a latin
subsquare containing the chosen trio. O

Acknowledgement

This research is supported by NSERC grant 312595-2017.

References

[1] L.M. Batten and A. Beutelspacher, The theory of finite linear spaces:
combinatorics of points and lines, Cambridge University Press, 1993.

[2] C.J. Colbourn and J.H. Dinitz, eds., The CRC Handbook of Combi-
natorial Designs, 2nd edition, CRC Press, Inc., 2006.

[3] A. Delandtsheer, Dimensional linear spaces. Handbook of incidence
geometry, 193-294, North-Holland, Amsterdam, 1995.

[4] P.J. Dukes and A.C.H. Ling, Pairwise balanced designs with prescribed
minimum dimension. Discrete Comput. Geom. 51 (2014), 485-494.

[5] P.J. Dukes and J. Niezen, Pairwise balanced designs of dimension
three. Australas. J. Combin. 61 (2015), 98-113.

[6] J. Niezen, Pairwise balanced designs of dimension three. M.Sc. thesis,
University of Victoria, 2013.

101



[7] L. Teirlinck, On Steiner spaces. J. Combin. Theory Ser. A 26 (1979),
103-114.

[8] R.M. Wilson, An existence theory for pairwise balanced designs III:
Proof of the existence conjectures. J. Combin. Theory Ser. A 18
(1975), 71-79.

102



