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Abstract

Honeycomb toroidal graphs are bipartite trivalent Cayley graphs
on generalized dihedral groups. We examine the two historical threads
leading to these graphs, some of the properties that have been estab-
lished, and some open problems.

1 Introduction

This paper discusses a family of graphs called honeycomb toroidal graphs.
They have arisen in two distinct settings which are discussed in the next two
sections. This is followed by an examination of some of their properties and
some parameters of interest. Several open problems also are mentioned.

Given the disparate subject areas employing graphs as models, there are
a variety of concepts for which different terms are used across disciplines.
Thus, we shall mention some terminology used in this paper. A graph
has neither loops nor multiple edges. The valency of a vertex v, denoted
val(v), is the number of edges incident with v. The order of a graph is the
cardinality of its vertex set and the size of a graph is the cardinality of its
edge set.
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work, Hamilton-laceable.
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A path of length ℓ in a graph is a subgraph consisting of a sequence

v0, v1, . . . , vℓ

of ℓ+1 distinct vertices such that the edge vivi+1 belongs to the path for i =
0, 1, . . . , ℓ−1. A cycle of length ℓ is a connected subgraph of size ℓ in which
every vertex has valency 2. Cycles are denoted by a sequence of vertices
as they occur along the cycle with the convention that the first vertex and
the last vertex of the sequence are the same in order to distinguish it from
a path. A Hamilton cycle in a graph is a cycle containing every vertex of
the graph, and a Hamilton path is a path containing every vertex.

2 Algebraic And Topological Viewpoint

An equivelar map with Schläfli type (a, b) has all face boundaries of length
a and every vertex of valency b. Altshuler [5] considered three families
of equivelar maps on the torus and was able to show that every graph in
two of the families possesses a Hamilton cycle, but was unable to do so
for the other family. The latter family consists of the equivelar maps with
Schläfli type (6, 3). Many of these graphs, but not all, are Cayley graphs
on the appropriate dihedral group. So this problem arising in topological
graph theory impinges on another problem which has drawn considerable
attention for fifty years, namely, does every connected Cayley graph of order
at least three have a Hamilton cycle?

The answer to the preceding question for Cayley graphs on abelian groups
was known to be yes as early as the first edition of Lovász’s book entitled
Combinatorial Problems and Exercises [12]. However, a much stronger
result by Chen and Quimpo [7] appeared in 1981. Their theorem follows
two definitions. A graphX is Hamilton-connected if for every pair of vertices
u and v in X there is a Hamilton path whose terminal vertices are u and
v. A bipartite graph X is Hamilton-laceable if the same property holds for
any two vertices in opposite parts.

Theorem 2.1. [7] If X is a connected Cayley graph of valency at least 3
on an abelian group, then X is Hamilton-connected unless it is bipartite in
which case it is Hamilton-laceable.

Note that the preceding theorem implies that every edge of a connected
Cayley graph on an abelian group belongs to a Hamilton cycle. If the
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valency is at least 3, it is implied by the theorem. If the valency is 2, the
graph is a Hamilton cycle.

The dihedral group is close to being abelian in the sense that the dihedral
group Dn of order 2n contains an abelian subgroup of order n. It still is not
known whether every connected Cayley graph on Dn is hamiltonian in spite
of the efforts of a non-trivial number of people working on the problem for
the last forty plus years.

As we shall see soon, when considering Cayley graphs on dihedral groups,
those for which the connection set consists of three reflections turn out to
be crucial. Let’s now take a closer look at these particular graphs.

Throughout this paper we let Dn denote the dihedral group of degree n
and order 2n. We visualize the group as the symmetries of a regular n-gon.
So the group is generated by an element ρ of order n (it rotates the n-gon
cyclically) and a reflection τ . Thus, |τ | = 2 and τρτ = ρ−1. The cyclic
subgroup 〈ρ〉 has index 2 in Dn. Note that the coset 〈ρ〉τ consists of n
reflections. When n is odd, the n reflections are the only involutions in Dn,
whereas, ρn/2 also is an involution when n is even.

We are interested in Cayley graphs on Dn whose connection sets consist of
three reflections. Let S = {ρατ, ρβτ, ργτ}, where 0 ≤ α < β < γ < n. It
is clear that the connection set {τ, ρβ−ατ, ργ−ατ} produces an isomorphic
Cayley graph. Hence, we shall assume the connection set has the form
S = {τ, ρxτ, ρyτ}, where 0 < x < y < n.

The graph X = Cay(Dn;S) is connected if and only if it is the case that
gcd(n, x, y) = 1. So dealing with connectivity is straightforward. The
subgraph Y generated using just τ and ρxτ consists of m components each
of which is a cycle of length r = 2n/m, where m = gcd(n, x). The case
in which we are most interested is when m > 1 and X is connected. This
means that the element ρyτ generates edges that connect the m components
of Y to form a single component for X . We want to take a careful look at
these graphs to see how to represent them nicely.

The vertices of 〈ρ〉 are cyclically labelled 1, ρ, ρ2, . . . , ρn−1 and those of 〈ρ〉τ
are cyclically labelled τ, ρτ, ρ2τ, . . . , ρn−1τ . The vertices of each component
alternate between belonging to 〈ρ〉 and 〈ρ〉τ . Thus, the cycle length r is
even and r ≥ 4.

Let ρyτ generate an edge joining a vertex ρa of 〈ρ〉 in a cycle C1 of Y to the
vertex ρa+yτ of 〈ρ〉τ in another cycle C2. Then [ρa, ρaτ, ρa−x] is a subpath
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of length 2 in C1, that is, ρ
a and ρa−x are distance 2 apart on the cycle C1.

Similarly, ρa+yτ and ρa+y−xτ are distance 2 apart on the cycle C2. Note
that ρyτ generates an edge from ρa−x to ρa+y−xτ . Hence, we see that ρyτ
joins the two cycles C1 and C2 by joining pairs of alternate vertices along
the two cycles.

Therefore, we may label the vertices of the graph as ui,j , 0 ≤ i ≤ m − 1
and 0 ≤ j ≤ r − 1 so that as we label the columns from left to right, it is
clear that we may assure that the edges between successive columns have
the same second coordinate. However, once the last column is labelled the
only feature we know about the edges from the last column back to the first
column is that they have the same change in the second coordinate, that
is, they have the same jump.

We now have a straightforward description of these graphs. They are called
honeycomb toroidal graphs and are denoted HTG(m, r, ℓ), where m is the
number of column cycles, r is the length of the column cycles so that r ≥ 4
and is even, and ℓ is the jump from the last column back to the first.
Following is a description of the edges:

• ui,jui,j+1 for i = 0, 1, . . . ,m − 1 and j = 0, 1, . . . , r − 1, where the
second subscript is reduced modulo r (these are called vertical edges);

• ui,jui+1,j for i = 0, 1, . . . ,m− 2 and all j such that i+ j is odd (these
are called flat edges; and

• um−1,ju0,j+ℓ, where m, j, ℓ all have the same parity (these are called
jump edges.

Even though this family of graphs has arisen from certain Cayley graphs
on dihedral groups, we should point that not all of them are Cayley graphs
on dihedral groups. In [4] it is shown that all of them are Cayley graphs
on generalized dihedral groups.

Figure 1 demonstrates clearly how HTG(m, r, ℓ) may be embedded on a
torus for any choice of the parameters. Even though these graphs all have
nice embeddings on the torus, they are slightly misnamed in that they
are not all toroidal graphs. This turn of events comes about because in
order for a graph that embeds on the torus to be toroidal it must be non-
planar. When m = 1, the graphs HTG(1, 4s, 3) are planar for s > 1. The
graphs HTG(2, r, 0), for all even r ≥ 4, are planar (note that HTG(2, 4, 2)
is isomorphic to HTG(2, 4, 0)) graphs. It is not hard to see that all others
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Figure 1: HTG(4, 10, 2) embedded on the torus

are non-planar. Nevertheless, we shall refer to all graphs in the family as
honeycomb toroidal graphs.

3 Network Topology Viewpoint

Network topology refers to methods used to connect objects together to
perform certain tasks. For example, connecting computers together to form
a computer network or connecting processors within a single computer fall
within the area. Some desirable properties are small valency so that the
number of direct connections is not too big and symmetry meaning that
all the vertices are essentially the same which allows local algorithms to be
the same at each vertex.

One approach is to start with tesselations of the plane by regular polygons.
These have an infinite number of vertices so that some modifications are
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required. One such modification is to bound a finite region of a tesselation
with a “nice polygon” to obtain a finite graph. The latter graph is called a
mesh. The mesh is not regular but the addition of a few edges may result
in a graph that is not only regular but also is vertex-transitive.

The tesselation of the plane by regular hexagons is one source for which
this was done. Stojmenovic [17] suggested three bounding types of polygons
to obtain meshes: a hexagonal polygon, a square polygon and a rhombic
polygon. He then determined ways to add edges so that all vertices have
valency 3 and the resulting graph is vertex-transitive.

(a)

X

Z

Y

(b)

X

Z

Y

(c)

Figure 2

Figure 2 shows the three smallest graphs obtained by Stojmenovic using
a hexagonal bounding polygon. We need to examine the viewpoint in
some detail because this formed the foundation for the way subsequent
researchers in the area developed the ideas. He called the graph in Figure
2(a) a hexagonal torus of size 1. The graph in Figure 2(b) he called the
hexagonal torus of size 2. Thus, to increase the size by 1 we add a ring
of hexagons around the current graph. This is a very geometric way of
building the graphs.

His use of a square as a bounding polygon has since been extended to
using a rectangle, and his use of a rhombus for a bounding polygon has
been extended to using a parallelogram. All three types of graphs share
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the property that they arise geometrically. They are, in fact, very special
honeycomb toroidal graphs as domonstrated in the next proposition which
is a summary of results in [9].

Proposition 3.1. The hexagonal torus of size m is HTG(m, 6m, 3m) for
m ≥ 1. The rectangular torus is HTG(m,n, 0) for even m ≥ 2. The
parallelogramic torus is HTG(m,n,m′), where m′ ≡ m(mod n) and 0 ≤
m′ < m.

Some comments about terminology are in order. Because of the way the
network topology approach developed these graphs, they were understand-
ably viewed as special. Thus, when it was discovered [9] how to broaden
the construction, the term generalized honeycomb torus was adapted and
appears in many papers. However, we object to this terminology for two
reasons leading to the term honeycomb toroidal graph being used.

The first objection is because the torus is a closed orientable surface of
genus one and even though these graphs have nice embeddings on the torus,
the graphs themselves should not be called tori. The second objection
arises because we have seen that the only differences between them come
from changing three descriptive parameters. There is no particular set of
parameters that is special and the term ‘generalized’ is inappropriate.

4 Hamiltonicity

Hamiltonicity refers to various properties of graphs revolving around Hamil-
ton paths and Hamilton cycles. We consider two properties in this section.
The first is the hamiltonian property, that is, does HTG(m, r, ℓ) have a
Hamilton cycle? The second property is Hamilton laceability, that is, is
every honeycomb toroidal graph Hamilton-laceable?

The answer to the first question is yes and was proven in [20]. We give a
short proof of this result but before doing so we discuss a useful constructive
technique for honeycomb toroidal graphs.

Consider three consecutive columns of HTG(m, r, ℓ) subscripted by i, i +
1, i + 2, and the flat edges ui,t1ui+1,t1 ;ui,t2ui+1,t2 ; . . . ;ui,tkui+1,tk , where
0 ≤ t1 < t2 < · · · < tk < r. Extend each edge ui,taui+1,ta to a path from
ui,ta to ui+2,ta by adding the vertical path from ui+1,ta down to ui+1,1+ta−1

followed by the edge ui+1,1+ta−1ui+2,1+ta−1 and then back up column i+2
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to ui+2,ta . We then obtain paths from ui,ta to ui+2,ta that use all the
vertices of columns i + 1 and i + 2. This operation is called the vertical
downward fill for columns i+1 and i+2. The vertical upward fill is defined
in an obvious analogous manner. These operations are most clearly seen
by looking at Figure 3 which shows an example of both vertical fills and
makes everything obvious. Note that this technique may be applied to
graphs other than honeycomb toroidal graphs.

Theorem 4.1. Every honeycomb toroidal graph is hamiltonian.

Proof. Claim: If HTG(m, r, ℓ) is hamiltonian, then HTG(m + 2, r, ℓ) also
is hamiltonian. It is easy to see that there must be at least one flat edge
between column 0 and column 1 in any Hamilton cycle of HTG(m, r, ℓ)
when m ≥ 2. So let u0,j1u1,j1 ;u0,j2u1,j2 ; . . . ;u0,jtu1,jt , 0 < j1 < j2 < · · · <
jt < r, be the flat edges between column 0 and column 1 in some Hamilton
cycle of HTG(m, r, ℓ).

Subdivide each flat edge with two new vertices in each edge. Remove the
central edge in each of the subdivided edges and use vertical fills between
the two new columns to obtain a Hamilton cycle in HTG(m+ 2, r, ℓ).
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Thus, it suffices to prove that HTG(2, r, ℓ) and HTG(3, r, ℓ) are hamiltonian.
Consider m = 2 first. For each even i, let Pi be the 4-path

u0,iu0,i+1u1,i+1u1,iu0,i+ℓ.

Start a path with P0 followed by Pℓ followed by P2ℓ and so on. This
eventually closes off to form a cycle. If the cycle is a Hamilton cycle, we
are done. If it is not a Hamilton cycle, then perform vertical fills upwards
on each flat edge (removing the flat edge) to obtain a Hamilton cycle. (In
the special case that ℓ = 0, it is easy to see how to obtain a Hamilton cycle
from the initial collection of 4-cycles.)

To prove that HTG(3, n, ℓ) is hamiltonian, we start with HTG(1, r, ℓ). The
column itself is a Hamilton cycle that uses none of the jump edges. By
Smith’s Theorem [18] there is a second Hamilton cycle C and it must use
some jump edges. Each jump edge has the form u0,iu0,j with i odd and
j = i + ℓ even. Let 0 < i1 < i2 < · · · < it < r be the odd subscripted
vertices of the jump edges in C. Add two columns whose vertices are
labelled conventionally. Replace the jump edge u0,iqu0,iq+ℓ with the jump
edge u2,iqu0,iq+ℓ and add the flat edge u0,iqu1,iq for each i1, i2, . . . , it. Now
use vertical fills between columns 1 and 2 to obtain a Hamilton cycle in
HTG(3, r, ℓ) completing the proof.

The second question is not yet settled and we state it as a research problem.

Research Problem 1. Is every HTG(m, r, ℓ) Hamilton-laceable?

Some comments about the preceding problem are in order. It is a significant
problem because an affirmative answer implies that the family of connected
Cayley graphs of valency at least 3 on generalized dihedral groups satisfies
the conclusions of the Chen - Quimpo Theorem. A special conclusion from
this, of course, is that every connected Cayley graph on a dihedral group
is hamiltonian. The fact that the latter conclusion still is unsettled is a
frustrating situation.

There has been some progress on Research Problem 1. In [2] it is proved
that HTG(m, r, ℓ) is Hamilton-laceable whenever m is even. This leaves
the case that m is odd. A few special cases for m = 1 are solved in [3]. The
following result is due to McGuinness [13]. His manuscipt contains a long
proof and was not published. Consequently, we provide a short proof here
for convenience.
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Theorem 4.2. If HTG(1, r, ℓ) is Hamilton-laceable, then HTG(m, r, ℓ) is
Hamilton-laceable for all odd m ≥ 1.

Proof. Using a method similar to the proof of Theorem 4.1, it is easy
to show that if HTG(3, r, ℓ) is Hamilton-laceable, then HTG(m, r, ℓ) is
Hamilton-laceable for all odd m ≥ 3. This reduces the proof to show-
ing that HTG(1, r, ℓ) being Hamilton-laceable implies that HTG(3, r, ℓ) is
Hamilton-laceable.

Assume that HTG(1, r, ℓ) is Hamilton-laceable. Let P ′ be a Hamilton path
in HTG(1, r, ℓ) from u0,0 to u0,j using at least one jump edge. Because
HTG(1, r, ℓ) is bipartite, j must be odd and the subscripts of the end ver-
tices of jump edges have opposite parity.

Project P ′ into the edge set of HTG(3, r, ℓ) as follows. If u0,xu0,x+1 is an
edge of P ′, where the subscripts are treated modulo r, then u0,xu0,x+1 is an
edge of the projection in HTG(3, r, ℓ). If u0,xu0,y is a jump edge in P ′ with
x odd and y even, then u2,xu0,y is an edge in the projection in HTG(3, r, ℓ).
Let Y denote the subgraph of HTG(3, r, ℓ) resulting from the projection of
P ′.

Let u2,x1 , u2,x2, . . . , u2,xt be the end vertices in column 2 of the jump edges
of Y , where 0 < x1 < x2 < · · · < xt < r. Now add the flat edges u0,xau1,xa

for a = 1, 2, . . . , t. Vertical fills between columns 1 and 2 yield a Hamilton
path from u0,0 to u0,j. Furthermore, if we also add the flat edge u0,ju1,j and
then do the vertical fills between columns 1 and 2, we obtain a Hamilton
path from u0,0 to u2,j.

From the preceding, we see that whenever there is a Hamilton path from
u0,0 to u0,j in HTG(1, r, ℓ) using at least one jump edge, then there are
Hamilton paths from u0,0 to both u0,j and u2,j in HTG(3, r, ℓ). So the
presence of jump edges is crucial.

A Hamilton path in HTG(1, r, ℓ) from u0,0 to u0,j must use jump edges if j
is neither 1 nor r− 1. Because u0,0u0,1 · · ·u0,r−1u0,0 is a Hamilton cycle in
HTG(1, r, ℓ), there is another Hamilton cycle C, by Smith’s Theorem [18],
using the edge u0,0u0,1. Clearly C must have at least one jump edge. The
same argument applies to the edge u0,0u0,r−1. Therefore, for each u0,j , j
odd, there is a Hamilton path in HTG(3, r, ℓ) from u0,0 to both u0,j and
u2,j.
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We now may obtain a Hamilton path from u0,0 to any vertex of the form
u1,j, j even, because both of the following permutations are automorphisms
of HTG(3, r, ℓ):

• f(ui,j) = ui,j+2; and

• g(ui,j) = ui+1,j+1 for i ∈ {0, 1} and g(u2,j) = u0,1+j+ℓ.

Therefore, HTG(3, r, ℓ) is Hamilton-laceable.

5 Cycle Structure

We now look at cycles in honeycomb toroidal graphs with respect to two
properties: girth and cycle spectrum. Throughout this section we use the
important convention that the notation HTG(m, r, ℓ) always is in normal
form, that is, ℓ ≤ r/2. This convention is possible because HTG(m, r, ℓ) is
isomorphic to HTG(m, r, r− ℓ). Hence, the information given with respect
to ℓ assumes r ≥ 2ℓ.

There are no odd length cycles because honeycomb toroidal graphs are bi-
partite. All HTG(m, r, ℓ) contain 6-cycles (K4 is not a honeycomb toroidal
graph) implying that the girth is either 4 or 6. The next result handles the
girth situation and is given without its easy proof.

Theorem 5.1. The girth of HTG(m, r, ℓ) is 6 with the following exceptions
for which the girth is 4:

• r = 4;

• m = 1, r > 4 and ℓ = 3;

• m = 1, r > 4, r ≡ 2(mod 4) and ℓ = r/2;

• m = 1, r > 4, r ≡ 0(mod 4) and ℓ = r−2
2 ; and

• m = 2, r > 4 and ℓ ∈ {0, 2}.

We now consider the cycle spectrum property. Recall that a graph is even
pancyclic if it contains all possible even length cycles from length 4 through
2⌊N/2⌋, where N is the order of the graph. Given that connected bipartite
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Cayley graphs of valency at least 3 on abelian groups are even pancyclic [1]
and honeycomb toroidal graphs are Cayley graphs on groups that are close
to being abelian, we expect that the latter graphs should have a rich cycle
spectrum.

Cycles whose lengths are congruent to 2 modulo 4 have a straightforward
answer according to the following result. We outline a proof with details
to be filled in by the reader. Moreover, to help with the description, we
now describe two operations that increase cycle lengths by 4 in honeycomb
toroidal graphs.

Let C be a cycle in HTG(m, r, ℓ) using the 2-path ui,jui,j+1ui+1,j+1, not
passing through ui,j+2 and not using any vertex of column i−1. We obtain
a new cycle whose length has increased by 4 if we remove the edge ui,jui,j+1

and replace it with the 5-path ui,j+1ui,j+2ui−1,j+2ui−1,j+1ui−1,jui,j. We
call this operation a vertical bypass of edge ui,jui,j+1. We may think of this
bypass as going up and to the left. It is clear that we may do the same
going to the right and/or going down.

Now suppose we have a cycle C in HTG(1, r, ℓ) using the edge u0,ju0,j+ℓ

and not containing any of the vertices {u0,j−2, u0,j−1, u0,j+ℓ−2, u0,j+ℓ−1}.
Using the 5-path u0,ju0,j−1u0,j−2u0,j+ℓ−2u0,j+ℓ−1u0,j+ℓ to replace the edge
u0,ju0,j+ℓ gives us a cycle whose length has increased by 4. We call this an
interval-shrinking bypass.

Theorem 5.2. The graph HTG(m, r, ℓ) has cycles of length L for all L
satisfying L ≡ 2(mod 4) and 6 ≤ L ≤ mr.

Proof. We have two cases based on the parity of m and first consider even
m. It is easy to see how to obtain cycles of lengths 6 through 2r − 2 using
vertices in columns 0 and 1, where the cycle of length 2r− 2 omits u0,0 and
u1,0 and the cycle lengths are congruent to 2 modulo 4.

If m = 2, we are finished. Otherwise, perform a vertical bypass to the right
and down with the edge u1,1u1,2. This produces a cycle of length 2r + 2.
Now do a vertical bypass to the right and up with the edge u2,1u2,2 to
obtain a cycle of length 2r + 6. We then may produce cycles with lengths
increasing by 4 at each iteration using columns 2 and 3 until reaching a
cycle of length 4r − 2 omitting the vertices u0,0 and u3,0. We continue in
this manner when m is even obtaining cycles of the required lengths until
reaching L = mr − 2 and completing this case.
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We now move to m odd for which the key is m = 1 and that is where we
begin. The strategy is to find sequences of successive lengths congruent to
2 modulo 4 so that the sequences possibly overlap and fill in all possible
desired lengths from 6 through mr or mr − 2.

Start with the 6-cycle u0,1u0,ℓ+1u0,ℓ+2u0,ℓ+3u0,3u0,2u0,1. Perform interval-
shrinking bypasses until reaching the cycle

u0,1u0,2 · · ·u0,ℓ−1u0,2ℓ−1u0,2ℓ−2 · · ·u0,ℓu0,1

of length 2ℓ. This gives us cycles of lengths 6, 10, 14, . . . , 2ℓ and this is the
first of the aforementioned sequences.

The cycle C1 = u0,1u0,2u0,r−ℓ+2u0,r−ℓ+1u0,r−ℓ · · ·u0,ℓ+1u0,1 has length r−
2ℓ + 4. Suppose that r − 2ℓ + 4 ≡ 2(mod 4) and note this implies r is a
multiple of 4. Use interval-shrinking bypasses to get cycles of all lengths
congruent to 2 modulo 4 from r−2ℓ+4 through r−2 giving us the sequence
of lengths r − 2ℓ+ 4, r − 2ℓ+ 8, . . . , r − 2.

If 2ℓ ≥ r − 2ℓ, then we have cycles of all lengths congruent to 2 modulo 4.
This happens when ℓ ≥ r/4. Otherwise, ℓ < r/4.

When ℓ < r/4, then the cycle

C2 = u0,1u0,ℓ+1u0,ℓu0,2ℓ, u0,2ℓ+1u0,2ℓ+2 · · ·ur−ℓ+2u0,2u0,1

has length r − 3ℓ + 7. If r − 3ℓ + 7 ≡ 2(mod 4), then interval shrinking
bypasses yield cycles of increasing lengths congruent to 2 modulo 4 until
reaching length r − ℓ + 1. This sequence of lengths overlaps the sequence
beginning with r − 2ℓ + 4 so that we now have all desired lengths from
r − 3ℓ + 7 to r − 2. If 2ℓ ≥ r − 3ℓ + 3, we are done. Otherwise, ℓ <
(r + 3)/5 and we continue in the same way by using a cycle starting with
u0,1u0,ℓ+1u0,ℓu0,2ℓu0,2ℓ−1u0,3ℓ−1. We maintain this pattern until we obtain
all lengths congruent to 2 modulo 4.

The cycle we obtain by replacing the 4-path u0,ℓ+1u0,ℓu0,2ℓu0,2ℓ+1u0,2ℓ+2

of C2 with the 2-path u0,ℓ+1u0,ℓ+2u0,2ℓ+2 gives us a cycle C3 whose length
is two less than the length of C2. So if r − 3ℓ+ 7 6≡ 2(mod 4), then we use
C3 instead of C2 to obtain appropriate cycle lengths.

If r − 2ℓ+ 4 ≡ 0(mod 4), the length of C1, then replace the 2-path

u0,ℓ+3u0,ℓ+4uℓ+5

of C1 with
u0,ℓ+3u0,3u0,4u0,5u0,ℓ+5
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to obtain a cycle C4 of length r− 2ℓ+ 6. We do as before to obtain longer
cycles and the maximum length we reach is r − 4, but this is sufficient as
we have an r-cycle. The other lengths are obtained as in the preceding
description and this takes care of m = 1.

When m > 1 is odd, we obtain cycles of all desired lengths from 6 through
(m − 1)r − 2 using the technique for an even number of columns at the
beginning of the proof on the last m − 1 columns. We easily find a cycle
of length (m− 1)r + 2 by using a vertical bypass. For lengths longer than
(m− 1)r + 2, that is, length (m− 1)r +M , M ≥ 6, take a cycle of length
M in HTG(1, r, ℓ) and project it into HTG(m, r, ℓ) as is done in the proof
of Theorem 4.2. Then use vertical fills as in the proof of Theorem 4.1 to
obtain a cycle of length (m− 1)r +M as required.

From Theorems 5.1 and 5.2, we see that cycles whose lengths are multiples
of 4 are of interest. Honeycomb toroidal graphs HTG(m, r, ℓ) for m ≥ 3 and
n > 4 have a simple 12-cycle lying in three columns so that lengths 4 and
8 become the only possible missing values once it is seen how to increase
cycle lengths by 4 at a time. The cycle spectrum problem was settled for
HTG(m, r, ℓ), when m ≥ 3, in [15]. We summarize their results in Table 1.
Any of the graphs not listed in the table are even pancyclic. The missing
even cycle lengths from 4 through mn−2 are displayed in the right column.
We remind the reader that the entries in the table are in normal form.

Table 1

The graphs Missing cycle lengths L

HTG(m, 4, ℓ), even m ≥ 6 L ≡ 0(mod 4) and 4 < L < 2m
HTG(m, 4, ℓ), odd m ≥ 5 L ≡ 0(mod 4) and 4 < L < 2m+ 2

HTG(m, r, ℓ),m ≥ 3, r = 6, 8 L = 4
HTG(3, r, ℓ), r ≥ 10 L = 4

ℓ ∈ {1, 3, 5}
HTG(4, r, ℓ), r ≥ 10 L = 4

ℓ ∈ {0, 2, 4}
HTG(4, r, ℓ), r ≥ 10 L = 4, 8

ℓ 6∈ {0, 2, 4}
HTG(m, r, ℓ), even m ≥ 6, r ≥ 10 L = 4, 8

HTG(3, r, ℓ), r ≥ 10 L = 4, 8
ℓ 6∈ {1, 3, 5}

HTG(m, r, ℓ), odd m ≥ 5, r ≥ 10 L = 4, 8
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This leaves the spectrum problem unsettled for m = 1 and m = 2 when the
cycle lengths are congruent to 0 modulo 4. The honeycomb toroidal graphs
for m = 1 were seen to be crucial for the Hamilton laceability question
so that they are an interesting subclass. As a side note, HTG(1, 14, 5) is
the Heawood graph so that the subclass contains well-known graphs. The
information for these two values of m is contained in Table 2, but there are
a couple of comments that are appropriate.

Table 2

The graphs Missing cycle lengths L

HTG(1, r, 3), r ≥ 6 none
HTG(1, r, r/2), r ≡ 2(mod 4) none

HTG(1, r, (r − 2)/2), r ≡ 0(mod 4) none
HTG(2, r, ℓ), ℓ ∈ {0, 2} none
HTG(1, r, 5), r ≥ 14 L = 4
HTG(1, r, 7), r > 14 L = 4

HTG(1, r, ℓ), r ≡ 2(mod 4), r > 14 L = 4
odd ℓ ∈ {(r − 4)/2, (r − 2)/4, (r + 2)/4}

HTG(1, r, ℓ), r ≡ 0(mod 4), r > 16 L = 4
odd ℓ ∈ {(r − 6)/2, (r − 4)/4, r/4, (r + 4)/4}
HTG(1, r, (r ± 3)/3), r ≡ 0(mod 6), r > 18 L = 4

HTG(1, r, ℓ), r ≡ 4(mod 6), r > 10 L = 4
ℓ ∈ {(r − 1)/3, (r + 5)/3}

HTG(1, r, ℓ), r ≡ 2(mod 6), r > 20 L = 4
ℓ ∈ {(r − 5)/3, (r + 1)/3}

HTG(2, r, 4), r ≥ 8 L = 4
HTG(2, r, (r − 4)/2), r ≡ 0(mod 4), r > 8 L = 4
HTG(2, r, (r − 2)/2), r ≡ 2(mod 4), r > 6 L = 4

From Theorem 5.1, we know precisely which honeycomb toroidal graphs
have no 4-cycles. On the other hand, when r > 2ℓ+ 2,

v1v2v3vℓ+3vℓ+4v2ℓ+4v2ℓ+3v2ℓ+2v2ℓ+1v2ℓvℓvℓ+1v1,

where vj = u0,j, is a 12-cycle in HTG(1, r, ℓ) for ℓ > 5. Lengths congruent
to 0 modulo 4 longer than 12 are obtained using methods similar to those
in the proof of Theorem 5.2.

For m = 2 it is straightforward to obtain a 12-cycle whenever ℓ ≥ 4 and
the longer cycle lengths congruent to 0 modulo 4 are again obtained in a
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similar manner to what was done before. Hence, it 8-cycles that may be
missing. For this reason, a convention for Table 2 that is different from
Table 1 is that any HTG(1, r, ℓ) or HTG(2, r, ℓ) not mentioned in the table
has neither 4-cycles nor 8-cycles, but all other even length cycles in the
feasible range.

6 Paths And Diameter

The diameter of a connected graph is the maximum distance between pairs
of distinct vertices in the graph. This parameter is of interest to anyone con-
cerned with the propagation of information throughout a network. As this
involves distances between vertices, we are interested in shortest paths in
honeycomb toroidal graphs. The next two lemmas provide useful informa-
tion about shortest paths in honeycomb toroidal graphs. Some terminology
is necessary before stating them.

When talking about directions in which edges are traversed, travelling along
a flat edge from column i to column i + 1 is one direction and travelling
from column i + 1 to column i is the other direction. Similarly, the two
directions for jump edges are from column 0 to column m − 1 and vice
versa.

Lemma 6.1. Every jump edge in a shortest path in HTG(m, r, ℓ) is tra-
versed in the same direction.

Proof. If a shortest path contains no jump edge, there is nothing to prove so
let P be a shortest path in HTG(m, r, ℓ) containing a jump edge. Suppose
the first jump edge encountered when traversing P is u0,jum−1,j−ℓ, that
is, we traverse it from column 0 to column m− 1. Suppose the next jump
edge encountered along P has the form um−1,ku0,k+ℓ, that is, it is traversed
from column m− 1 to column 0.

This implies that the subpath P ′ of P from um−1,j−ℓ to um−1,k has no
jump edges and the second subscript has changed from j − ℓ to k. This is
done only by vertical edges in various columns. The change from j to k+ ℓ
is the same as the change from j−ℓ to k. Hence, we may delete the subpath
from u0,j to u0,k+ℓ and replace it with the vertical changes in P ′ translated
by ℓ projected onto column 0 . This gives us a shorter walk (some edges
may be duplicated via the projection) from u0,0 to the terminal vertex of
P . This is a contradiction to P being a shortest path.
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A similar contradiction arises if the traversals of two consecutive jump
edges are reversed. Therefore, all the jump edges in a shortest path go
from column 0 to column m− 1 or vice versa.

Lemma 6.2. Let a shortest path P in HTG(m, r, ℓ) have jump edges. If P
contains flat edges between the same two columns, they must be separated
by a jump edge. In particular, if P has no jump edges, then there is at most
one flat edge between two columns in P .

Proof. Let ui,jui+1,j and ui,kui+1,k be succesive appearances of flat edges
between columns i and i + 1, 0 ≤ i < m − 1. Suppose that the first edge
is traversed from ui,j to ui+1,j . If there is no jump edge between ui,jui+1,j

and the edge ui,kui+1,k, then there are vertical edges taking the second
subscript from j to k no matter which direction ui,kui+1,k is traversed.

In either case, remove the subpath of P from ui,j to ui,k and replace it with
the projection of the vertical edges onto column i. This yields a shorter
walk with the same terminal vertices which is a contradiction. Similar
arguments work if the edge ui,jui+1,j is traversed in the opposite direction.
The conclusion follows from this.

Consider the special graph HTG(m, r, 0). If we are looking for a shortest
path from u0,0 to ui,j , it is clear that we need vertical edges taking us to
row j and flat edges (the jump edge is also flat in this case) taking us to
column i. So if i ≤ m/2, we use flat edges in the direction left to right, and
if i > m/2, we take a jump edge from column 0 to column m− 1 followed
by flat edges from right to left. We use vertical edges as required to reach
row j. It is straightforward to obtain the diameter as shown in Table 3.

The preceding worked easily because the jump edges change the second
subscript by zero. Other values for the jump edges allow for big changes
in shortest paths because a large jump edge value allows large changes in
the second subscript. For example, suppose we are trying to increase the
second subscript as much as possible. We can start a path at u0,0 and reach
the vertex um−1,m−1 when we first reach column m−1. We follow this with
the edge um−1,m−1um−1,m and then the jump edge um−1,mu0,m+ℓ.

We now have a path from u0,0 to u0,m+ℓ of length 2m. If instead we took
the path from u0,0 to u0,m+ℓ up column 0, it has length m + ℓ. Thus, if
ℓ > m, we have a shorter path by using a jump edge. Lemma 6.1 provides
some help because it tells us that if we use more than one jump edge in a
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shortest path, we must use them in the same direction which forces many
edges to be used between their appearances.

Research Problem 2. Determine the shortest paths between vertices in
an arbitrary HTG(m, r, ℓ).

The diameters of a few honeycomb toroidal graphs have been determined
in [17, 19, 21] and we summarize their results in the following table. Note
that [19] corrects an error for the diameter of HTG(m, 2m,m) given in [17].

Table 3

The graphs diameter

HTG(m, 6m, 3m) 2m

HTG(m, 2m,m),m ≥ 2,m ≡ 1, 4(mod 6) ⌊4m/3⌋
HTG(m, 2m,m),m ≥ 2,m ≡ 0, 2, 3, 5(mod 6) ⌈4m/3⌉

HTG(m, r, 0),m even ,m ≥ r − 2 m

HTG(m, r, 0),m even ,m < r − 2 (r +m)/2

HTG(m, r, ℓ),m ≥ r/2, ℓ ≡ r −m(mod r) max{m, ⌊(2m+ r + 1)/3⌋

Research Problem 3. Determine the diameter of HTG(m, r, ℓ) in terms
of the parameters m, r and ℓ.

The preceding problem undoubtedly has many subcases as the value of the
jump varies. Lemmas 6.1 and 6.2 allow us to determine that the diameter of
HTG(1, r, ℓ) is 2⌊r/ℓ⌋+1 whenever ℓ ≤ √

r. We shall not present the tedious
proof of this fact, but mention it just to indicate the kinds of complications
that likely arise in considering the preceding problem.

7 Automorphisms

Honeycomb toroidal graphs are Cayley graphs [4] on a generalized dihe-
dral group. This means they are vertex-transitive. As mentioned earlier,
HTG(1, 14, 5) is the Heawood graph and its automorphism group has order
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336 in spite of the graph having only 14 vertices. On the other hand, the
automorphism group of HTG(1, 14, 3) has order only 28. So we see there
may be wide variations in the automorphism groups of these graphs. This
suggests the next problem.

Research Problem 4. Determine the automorphism group of an arbitrary
HTG(m, r, ℓ) in terms of the parameters m, r and ℓ.

Given a family of Cayley graphs, there is interest in determining those
with minimal automorphism groups. In this case that means those that are
GRRs, that is, those for which |Aut(HTG(m, r, ℓ)| = mr.

Research Problem 5. Determine when HTG(m, r, ℓ) is a GRR, that is,
|Aut(HTG(m, r, ℓ))| = mr.

Little is known about the preceding question. One result in this direction
comes from [10] in which the following result is proved.

Theorem 7.1. The graph HTG(1, r, ℓ) in normal form is a GRR if and
only if r ≥ 18, ℓ < r/2 and the following all hold:

• (ℓ+ 1)2/4 6≡ 1(mod r/2);

• (ℓ− 1)2/4 6≡ 1(mod r/2); and

• (ℓ2 − 1)/4 6≡ −1(mod r/2).

8 Conclusion

The family of graphs under discussion is of interest for several reasons and
we have looked at it primarily from a graph theoretic viewpoint. There
has been considerable work done on algorithmic aspects of honeycomb
toroidal graphs. Most of the concern is with routing, broadcasting, bi-
section width, semigroup computation and cost. Again, most of the work
has dealt with the special honeycomb toroidal graphs introduced in [17]
and their extensions. So there is room for research for the entire family of
honeycomb toroidal graphs. There is background for the algorithmic work
in [6, 8, 11, 14, 16, 17].

We also have presented some specific research problems that we find inter-
esting. This is a family of graphs worthy of much further investigation.
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