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Distance quasi-magic regular graphs and
some applications

Daniel M. Banegas and Bryan J. Freyberg∗

Abstract. We introduce the following variation of distance magic labeling.
Let G be a graph of order n and ℓ a bijection from the vertex set of G to a set
of labels {1, 2, . . . , ς−1, ς+1, . . . , n+1} for some ς ∈ {2, . . . , n}. The weight
of a vertex is defined as the sum of the labels of all neighboring vertices.
If the weight of every vertex is equal to the same fixed constant, then we
say ℓ is a distance quasi-magic labeling of G. This differs from a distance
magic labeling in which the first n positive integers are used as labels. Our
main results include constructing r-regular distance quasi-magic graphs of
order n for some pairs (n, r) such that no r-regular distance magic graph
of order n exists. To do this, we use a mix of established tools as well as
our own. Then we apply these results in three different areas: construction
of quasi-equalized incomplete tournaments, face-magic labelings of type
(a, b, c) for Dutch windmill graphs, and cycle-magic labelings of generalized
book graphs.

1 Introduction

Let G be a simple graph and f : V (G) → {1, 2, . . . , |V (G)|} be a bijection.
For a vertex v ∈ V, define the weight of v as

w(v) =
∑

uv∈E(G)

f(u).

If there exists some constant µ, called the magic constant, such that w(v) =
µ for all v ∈ V (G), we say that f is a distance magic labeling of G. Further,
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a graph that admits a distance magic labeling is called a distance magic
graph. For surveys of results in this area, we direct the reader to [1] or [5].

The focus of this manuscript is on regular graphs which are not distance
magic graphs. We review some pertinent results next.

Theorem 1.1 (Vilfred [12]). Let G be an r-regular graph. If r is odd, then
G is not a distance magic graph.

Let Kp:n
∼= Kn,n,...,n (n appears p times in the subscript) denote the com-

plete equipartite graph where each of the p partite sets contain n vertices.
It is easy to observe that Kp:n is distance magic if and only if there exists a
partition of the set S = {1, 2, . . . , pn} into p sets of size n such that the sum
of the elements in each of the sets is constant. Such a partition is known
as a constant sum partition. Miller, Rodger, and Simanjuntak proved the
following in [11].

Theorem 1.2 (Miller et al. [11]). Let n, p > 1. The complete equipartite
graph Kp:n is distance magic if and only if n is even or both n and p are
odd.

Regarding even-regular graphs, Froncek, Kovar, and Kovarova proved the
following in [3].

Theorem 1.3 (Froncek et al. [3]). Let n ≥ 4 be an even integer. There
exists a distance magic r-regular graph G of order n if and only if r is even,
2 ≤ r ≤ n− 2, and n ≡ 0 (mod 4) or r ≡ 0 (mod 4).

Theorems 1.1 and 1.3 lead to the following non-existence corollary for
graphs of singly even order.

Corollary 1.4. Let G be an r-regular graph of order n. If n ≡ 2 (mod 4)
and r ̸≡ 0 (mod 4), then G is not a distance magic graph.

Corollary 1.4 provides the motivation for this manuscript. We wonder: Can
one achieve something akin to a distance magic labeling of an r-regular
graph of order n when n is singly even and r is not divisible by 4?

This question was addressed by Godinho, Singh, and Arumugam in [6].
They relaxed the requirement that every vertex has the same weight, and
instead asked that the weight of every vertex is either k or k+1 for some k.
They called the labeling a nearly distance magic labeling and proved some
basic results.
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We take an approach more in line with Froncek, Paramasivam, and Prajeesh
who recently introduced the notion of a quasimagic rectangle in [4] (this will
be discussed more in Section 2). We propose the following labeling which
asks that the weight of each vertex is constant (as with distance magic) but
allows one label to be excluded.

Definition 1.5. Let G be a simple graph of order n and ℓ : V (G) →
{1, 2, . . . , ς−1, ς+1, . . . , n+1} be a bijection for some integer ς ∈ {2, . . . , n}.
If there exists a fixed constant µ called the magic constant such that

w(v) =
∑

uv∈E(G)

ℓ(u) = µ

for every v ∈ V (G), then ℓ is a distance quasi-magic labeling and the graph
G is a distance quasi-magic graph.

Figure 1 shows two different distance quasi-magic labelings of K3,3, one
with ς = 4 and µ = 12, and one with ς = 6 and µ = 11. Note that K3,3 is
not a distance magic graph.
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Figure 1: Two different distance quasi-magic labelings of K3,3

The following can be said about the necessary conditions for r-regular dis-
tance quasi-magic graphs.
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Lemma 1.6. Let G be an r-regular graph of order n with distance quasi-
magic labeling ℓ : V (G) → {1, 2, . . . , ς−1, ς+1, . . . , n+1}. Then the magic
constant of ℓ is

µ =
r((n+ 1)(n+ 2)/2− ς)

n
.

Proof. Let L = {1, 2, . . . , ς− 1, ς+ 1, . . . , n+ 1} and

w(G) =
∑

v∈V (G)

w(v).

On one hand, w(G) = nµ. On the other hand,

w(G) = r
∑

i∈L i

= r( (n+1)(n+2)
2 − ς).

Hence, µ = r((n+1)(n+2)/2−ς)
n , as claimed.

In the sections that follow we construct distance quasi-magic labelings of
r-regular graphs of order n for pairs (n, r) such that there exists no r-
regular distance magic graph of order n. We then provide three disparate
applications for distance quasi-magic labeling; one to tournament design,
and two involving constructions of face-magic or cycle-magic labelings.

2 Tools

An a × b magic rectangle MR(a, b) is an a by b array of the integers
1, 2, . . . , ab such that no integer is repeated, the sum of all the integers
in each row is equal to some constant ρ, and the sum of all the inte-
gers in each column is equal to some constant σ. It is easy to see that
ρ = b(ab+1)

2 and σ = a(ab+1)
2 . Harmuth proved that such an array exists

whenever a ≡ b (mod 2) with the trivial exception when exactly one of a
or b is 1 or a = b = 2 [7, 8]. Very recently, the nonexistence of even by odd
(or odd by even) magic rectangles motivated Froncek, Paramasivam, and
Prajeesh to introduce the following close relative of magic rectangles [4].

Let a be an odd integer and b an even integer. An a × b quasi-magic
rectangle QMR(a, b : ς) is an a by b array such that each of the integers
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1, 2, . . . , ς− 1, ς+1, . . . , ab+1 appears exactly once, the sum of the entries
in each row is equal to some constant ρ, and the sum of the entries in each
column is equal to some constant σ.

Theorem 2.1 (Froncek et al. [4]). A quasi-magic rectangle QMR(a, 2t :
at + 1) exists for all odd a ≥ 1 and t ≥ 1 except when t = 1 and a ≡ 1
(mod 4).

Though a QMR(a, 2 : ς) does not exist if a ≡ 1 (mod 4), the next lemma
shows that it is possible to partition [1, 2a + 1] \ {a + 1} into two sets of
size a that have the same sum.

Lemma 2.2. Let a > 1 and a ≡ 1 (mod 4). Then the set [1, 2a+1]\{a+1}
can be partitioned into two sets A and B such that |A| = |B| = a and∑

i∈A i =
∑

j∈B j = a(a+ 1)

Proof. We assign the members of A and B in a serpentine fashion with the
exception of the column marked by ∗.

A 1 4 5 . . . a a+ 4 a+ 6 a+ 7 a+ 10 . . . 2a+ 1
B 2 3 6 . . . a+ 2 a+ 3 a+ 5 a+ 8 a+ 9 . . . 2a

∗

By comparing the columns, notice
∑

i∈A i−∑
j∈B j = (−1 + 1− 1 + · · ·+ 1)

+(−2 + 1 + 1)
+(−1 + 1− 1 + · · ·+ 1)

= 0,

since there are an odd number of columns. Hence,
∑

i∈A i =
∑

j∈B j. The
fact that this sum equals a(a+1) is an easy counting exercise and we leave
it to the reader.

To construct 6-regular distance quasi-magic graphs in the next section, we
will need a partition of the integers into sets of size 2 or 3 such that the
sum of the elements in any two subsets of the same size is the same.

Lemma 2.3. Let n ≡ 2 (mod 4), n ≥ 26, and S = {1, 2, . . . , n
2 ,

n
2 +

2, . . . , n+1}. There exists a partition of S such that S = A1 ∪ · · · ∪An
2 −9 ∪

B1∪ · · ·∪B6, |Ai| = 2, |Bj | = 3,
∑

a∈Ai
a = n+2, and

∑
b∈Bj

b = 3(n2 +1)
for all i and j.
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Proof. The partition is
Ai = {i, n+ 2− i}

for i = 1, 2, . . . , n
2 − 9, and

B1 = {n
2 − 8, n

2 + 2, n
2 + 9},

B2 = {n
2 − 7, n

2 + 3, n
2 + 7},

B3 = {n
2 − 6, n

2 + 4, n
2 + 5},

B4 = {n
2 − 5, n

2 − 2, n
2 + 10},

B5 = {n
2 − 4, n

2 − 1, n
2 + 8},

B6 = {n
2 − 3, n

2 ,
n
2 + 6}.

The lexicographic product of a graph G with a graph H, denoted G ◦ H
or G[H], can be constructed by replacing each vertex of G with a copy of
H and replacing every edge of G with a complete bipartite graph between
the vertices of the two corresponding copies of H. For example, Km,m

∼=
K2 ◦Km. We use the lexicographic product in the proofs contained in the
next section.

3 Main results

In this section, we construct r-regular distance quasi-magic graphs of order
n. Along the way we emphasize pairs (n, r) such that no r-regular distance
magic graph of order n exists. We will call such a pair a quasi pair. We
focus on quasi pairs (n, r) such that n ≡ 2 (mod 4) and r ̸≡ 0 (mod 4).
In particular, we show that (n, 6) is a quasi pair whenever n ≡ 2 (mod 4)
and n = 18 or n ≥ 26. In addition, we also show that if n = ab where
a > 1 is odd and b ≡ 2 (mod 4), then (n, (2i − 1)a) and (n, (4j − 2)a) for
i ∈ [1, b − 1] and j ∈ [1, b−2

4 ] are quasi pairs. We begin by describing a
construction using quasi-magic rectangles.

Theorem 3.1. Let a be odd, b even, and a, b > 1. There exists an r-regular
distance quasi-magic graph of order n = ab for every r ∈ {a, 2a, . . . , (b −
1)a}.

Proof. Let r′ ∈ {1, 2, . . . , b− 1} and G′ be any r′-regular graph of order b.
Form the graph G ∼= G′◦Ka with vertex set V (G) = V1∪V2∪· · ·∪Vb where
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each Vi is a set of a isolated vertices corresponding to the appearance of
Ka in the product. G is (r′a)-regular and has order n = ab.

If a ≡ 1 (mod 4) and b = 2, let f and g, respectively be arbitrary bijections
between V1 and A, V2 and B, respectively for A and B given by Lemma
2.2. Otherwise, assign the labels of V (G) using a quasi-magic rectangle as
follows. For 1 ≤ i ≤ b, let fi be an arbitrary bijection between Vi and
column i of a quasi-magic rectangle QMR(a, b : ς). It is easy to see that
each vertex of G has been assigned exactly one of the labels in {1, 2, . . . , ς−
1, ς+ 1, . . . , n+ 1} and for every v ∈ V (G),

w(v) = r′σ

where σ = a(a + 1) or σ is the magic column sum of the QMR(a, b : ς).
Hence, we have described a distance quasi-magic labeling of G.

The fact that (18, 6) is a quasi pair follows easily from the last theorem. In
addition, we have the following corollary for complete equipartite graphs.

Corollary 3.2. Let n, p > 1. The complete equipartite graph Kp:n is a
distance quasi-magic graph if n is odd and p is even.

Together, Theorem 1.2 and Corollary 3.2 say that every complete equipar-
tite graph is distance magic or distance quasi-magic. Also, many of the
pairs given by Theorem 3.1 are quasi pairs. For example, (6, 3) is a quasi
pair and a distance quasi-magic graph with these parameters is shown in
Figure 1.

The next result shows that (n, 6) is a quasi pair for any n ≡ 2 (mod 4) and
n ≥ 26.

Theorem 3.3. Let n ≡ 2 (mod 4) and n ≥ 26. There exists a 6-regular
distance quasi-magic graph of order n.

Proof. Let G be any 3-regular graph of order n
2 −9 and H be any 2-regular

graph of order 6. We claim the graph G ∼= (G ◦K2)∪ (H ◦K3) is a distance
quasi-magic graph. Indeed, Lemma 2.3 provides the correct labeling in the
following way. Arbitrarily assign each pair of blown up vertices in G ◦K2

the labels from the set Ai for i = 1, 2, . . . , n
2 −9, and each triple of blown up

vertices in H ◦K3 the labels from the set Bj for j = 1, 2, . . . , 6. Since this
assignment is a bijection from V (G) to {1, 2, . . . , n

2 ,
n
2 +2, . . . , n+1}, it only
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remains to check the weight of each vertex. Let v ∈ V (G). If v ∈ V (G◦K2),
then

w(v) = 3(n+ 2).

On the other hand, if v ∈ V (H ◦K3), then

w(v) = 2 · 3(n2 + 1)
= 3(n+ 2),

so we have proved the claim.

4 Applications

In this section we describe three applications for distance quasi-magic la-
belings. The first is a variation of equalized incomplete tournaments which
equalize the total opponent strength for each competitor. The second ap-
plication is to face-magic labelings of Dutch windmill graphs, and the third
is to cycle-magic labelings of generalized book graphs.

4.1 Tournaments

An equalized incomplete tournament EIT (n, r) consists of n competitors
ranked by strength 1 through n, where each competitor plays r matches
against r distinct opponents and the sum of the rankings of all r opponents
to be played is some fixed constant k for every competitor. It is known
that distance magic graphs directly correspond to equalized incomplete
tournaments [3].

Observation 4.1. An r-regular distance magic graph of order n exists if
and only if an equalized incomplete tournament EIT (n, r) exists.

Corollary 4.2. If n ≡ 2 (mod 4), there does not exist an equalized incom-
plete tournament EIT (n, r) if r ≡ 1, 2, or 3 (mod 4).

Corollary 4.2 is analogous to Corollary 1.4 in that it provides the motivation
for achieving something akin to equalized incomplete tournaments. We
address this by introducing the following type of tournament motivated by
distance quasi-magic labelings.
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Suppose there is a tournament involving n competitors ranked by strength
from 1 through n + 1 excluding some integer ς ∈ [2, n], and each com-
petitor plays exactly r matches against r distinct opponents. If for each
competitor, the sum of the rankings of all r opponents to be played is
some fixed constant k, we call this a quasi-equalized incomplete tournament
QEIT (n, r, ς).

Observation 4.3. An r-regular distance quasi-magic graph of order n ex-
ists if and only if a quasi-equalized incomplete tournament QEIT (n, r, ς)
exists for some ς.

We obtain the following corollaries from Theorems 3.1 and 3.3, respectively.

Corollary 4.4. Let a, b > 1. If a is odd and b is even, then there exists a
quasi-equalized incomplete tournament QEIT (ab, r, ς) for r = a, 2a, . . . , (b−
1)a and some ς.

Corollary 4.5. Let n ≥ 26 and n ≡ 2 (mod 4). Then there exists a quasi-
equalized incomplete tournament QEIT (n, 6, n

2 ).

4.2 Face-magic labelings of Dutch windmills

Let G = (V,E, F ) be a planar graph and a, b, c ∈ {0, 1}. A labeling of type
(a, b, c) is an assignment of a, b, and c labels to the vertices, edges, and faces
of a graph, respectively, that uses each of the integers in {1, 2, . . . , a|V | +
b|E|+c|F |} exactly once. The weight w of a face is calculated as the sum of
the label of the face (if present) with the labels of the surrounding vertices
and edges (when present) of the face. If there exists a fixed constant µ(s)
such that the weight of every s-sided face is µ(s), then we say the labeling
is a face-magic labeling of type (a, b, c) and call G a face-magic graph of
type (a, b, c).

Classifying all triples (a, b, c) such that a graph admits a face-magic labeling
of type (a, b, c) is known as the spectrum problem. Freyberg solved the
spectrum problem for fans and subdivided fans, wheels and subdivided
wheels, ladders and subdivided ladders, and chained cycles in [2]. Using
distance magic and distance quasi-magic labelings in conjunction, we will
solve the spectrum problem for the Dutch windmill graph.

The Dutch windmill graph Dm
n consists of m copies of the cycle graph Cn

joined by a common vertex we refer to as the hub h. The graph Dm
3 is also

known as the friendship graph. Figure 2 shows the Dutch windmill graph
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Figure 2: The Dutch windmill graph Dm
n

Dm
n equipped, for reference, with the labels used in the proof of Theorem

4.7.

In 1983, Lih found face-magic labelings of types (1, 0, 0) and (1, 1, 0) for the
friendship graphs [10].

Theorem 4.6 (Lih [10]). The friendship graph Dm
3 admits types (1, 0, 0)

and (1, 1, 0) face-magic labelings for all m ≥ 2.

Our next result not only solves the spectrum problem for friendship graphs,
complementing Theorem 4.6, but more generally solves the spectrum prob-
lem for Dutch windmills.

Theorem 4.7. Let n ≥ 3, m ≥ 2, and a, b, c ∈ {0, 1}. The Dutch windmill
graph Dm

n is face-magic of type (a, b, c) for any triple (a, b, c) except when
(a, b, c) = (0, 0, 1) or m is even, n is odd, and (a, b, c) = (0, 1, 0).

Proof. Let G ∼= Dm
n = (V,E, F ) be embedded in the plane according to

its namesake. It is trivial that every graph is a type (0, 0, 0) face-magic
graph and every graph with at least two faces is not a type (0, 0, 1) face-
magic graph. Also observe that a type (0, 1, 0) face-magic labeling of G
exists if and only if the complete equipartite graph Km:n admits a distance
magic labeling. Hence, Theorem 1.2 provides the necessary and sufficient
conditions for this case: Either n must be even or both m and n must be
odd. We will provide a labeling for each of the 5 remaining cases next.
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Let V =
⋃m

j=1 Vj ∪ {h} where Vj = {vji : 1 ≤ i ≤ n − 1} and vji is
the ith vertex in cycle j, E =

⋃m
j=1 Ej where Ej = {vji vji+1 : 1 ≤ i ≤

n−2}∪{hvj1, hvjn−1}, and F =
⋃m

j=1 Fj ∪F∞ where each Fj is the jth copy
of Cn, and F∞ is the exterior face (see Figure 2). Each Fj has n sides while
F∞ has mn sides. Since F∞ is the only mn-sided face, we need only equalize
the weights of the n-sided faces. Clearly, |V | = m(n − 1) + 1, |E| = mn,
and |F | = m+ 1.

Let H ∼= Km:n′ for some n′ ≥ 2, and denote the jth partite set of vertices in
V (H) as V H

j so that |V H
j | = n′ and V (H) =

⋃m
j=1 V

H
j . Let f ′ be a distance

magic (DM) labeling or distance quasi-magic (DQM) labeling of H with
magic constant k. The existence of such a labeling is given by Theorem 1.2
or Corollary 3.2, respectively. Let f : f ′(V H

j ) → S be an arbitrary bijection
for the value of n′ and set S given in the table below. Then define f(F∞)
or f(h), when necessary (and depending on whether f ′ is DM or DQM),
also as indicated in the table.

type n′ S f(F∞) f(h)

(0, 1, 1) n+ 1 Ej ∪ Fj
m(n+ 1) + 1, f ′ DM
ς, f ′ DQM

(1, 0, 0) n− 1 Vj
m(n− 1) + 1, f ′ DM
ς, f ′ DQM

(1, 0, 1) n Vj ∪ Fj mn+ 2
mn+ 1, f ′ DM
ς, f ′ DQM

(1, 1, 0) 2n− 1 Vj ∪ Ej
m(2n− 1) + 1, f ′ DM
ς, f ′ DQM

For each case above, the weight of the n-sided face Fj is

w(Fj) =





k + f(F∞) type (0, 1, 1)

k + f(h) types (1, 0, 0) and (1, 1, 0)

k + f(F∞) + f(h) type (1, 0, 1)

for j = 1, 2, . . . ,m. Since f is a bijection and the weight of each face is
independent of j, the labeling f is a type (a, b, c) face-magic labeling in each
case. The fact that G admits a type (1, 1, 1) face-magic labeling follows
immediately from the labelings of types (1, 0, 0) and (0, 1, 1). Hence, we
have proved the claim.
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4.3 Cycle–magic labeling of generalized book graphs

A labeling of type (1, 1, 0) of a graph G is called H-magic if for every
subgraph H ′ ∼= H, the sum of the labels of vertices and edges contained
in H ′ is equal to some fixed constant. As with the labelings discussed
earlier, we refer to this sum as the weight of H ′. If a graph G admits such
a labeling, we say G is an H-magic graph. This notion differs from that of
type (1, 1, 0) face-magic labeling since it is not dependent on the embedding
of the graph. We define the following generalization of H-magic labeling.

Definition 4.8. Let G = (V,E) be a graph, H = {H1, H2, . . . ,Hn} be a
set of non-isomorphic subgraphs of G, and f a bijection from V ∪ E →
[1, |V |+ |E|]. If there exists some constant k(i) such that

∑

x∈V (H)∪E(H)

f(x) = k(i)

for every subgraph H ∼= Hi and every i = 1, 2, . . . , n, then f is an H-magic
labeling, and G is a H-magic graph.

The book graph Bm is commonly defined as Bm
∼= K1,m□K2, the Carte-

sian product of the star graph with a single edge. Every subgraph of Bm

isomorphic to C4 is called a page, so Bm contains m pages. Lladó and
Moragas proved the following in [9].

Theorem 4.9 (Lladó and Moragas [9]). The book graph Bm
∼= K1,m□K2

is C4-magic if m is odd.

It is worth noting that a book also contains 6-cycles (start at the top corner
of the spine, trace your finger around the outside 3 edges of one page to
the bottom of the spine, then trace your way back to the top corner of the
spine along a different page). We will show that Bm is {C4, C6}-magic for
all m ≥ 1 and provide a similar result for a more generalized family which
contain book graphs next.

The generalized book graph GB(m,n) consists of m copies of the cycle
graph Cn which all share a common edge called the spine. Therefore,
GB(m, 4) ∼= Bm. Figure 3 below shows the namesake embedding of the
(generalized) book graph GB(3, 4), while Figure 4 shows a planar embed-
ding of a generalized book graph GB(4, 5) along with a {C5, C8}-magic
labeling. In total, GB(m,n) has m(n− 2)+ 2 vertices, m(n− 1)+ 1 edges,
and it is easy to see that if H is a cycle and a subgraph of GB(m,n), then
H ∼= Cn or H ∼= C2n−2.
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Figure 3: The (generalized) book graph GB(3, 4) ∼= B3

Theorem 4.10. The generalized book graph GB(m,n) is {Cn, C2n−2}-
magic for every m ≥ 1 and n ≥ 3.

Proof. Let G ∼= GB(m,n) = (V,E) with V = {vji : 1 ≤ i ≤ n − 2, 1 ≤ j ≤
m}∪{s1, s2} where vji is the ith vertex in cycle j, s1 and s2 are the vertices on
the spine, and E = {vji vji+1 : 1 ≤ i ≤ n−3, 1 ≤ j ≤ m}∪{s1vj1, s2vjn−2, 1 ≤
j ≤ m}∪{s1s2}. Let H ∼= Km:2n−3 and Vi(H) be the ith partite set of V (H)
for i = 1, 2, . . . ,m. We describe a bijection f : V ∪ E → [1,m(2n− 3) + 3]
as follows. There are two cases.

Case 1. m is odd.
Let f ′ be a distance magic labeling of H with magic constant k. Let f be any
arbitrary bijection between f ′(Vj(H)) and the vertices and edges of G given
by {vji : 1 ≤ i ≤ n−2}∪{vji vji+1 : 1 ≤ i ≤ n−3}∪{s1vj1, s2vjn−2}. Then let
f(s1) = m(2n−3)+1, f(s2) = m(2n−3)+2, and f(s1s2) = m(2n−3)+3.

Case 2. m is even.
Let f ′ be a distance quasi-magic labeling of H with magic constant k and
excluded label ς. Let f be any arbitrary bijection between f ′(Vj(H)) and
the vertices and edges of G given by {vji : 1 ≤ i ≤ n − 2} ∪ {vji vji+1 : 1 ≤
i ≤ n−3}∪{s1vj1, s2vjn−2}. Then let f(s1) = ς, f(s2) = m(2n−3)+2, and
f(s1s2) = m(2n− 3) + 3.

Let C be a subgraph of G isomorphic to a cycle. If C ∼= Cn, then for some
j ∈ [1,m], the weight of C is

w(C) =
∑n−2

i=1 f(vji ) +
∑n−3

i=1 f(vji v
j
i+1) + f(s1v

j
1)

+f(s2v
j
n−2) + f(s1) + f(s1s2) + f(s2)

= k + 2m(2n− 3) + 5 + f(s1)

=

{
k + 3m(2n− 3) + 6 if m is odd
k + 2m(2n− 3) + 5 + ς if m is even

.

Otherwise, if C ∼= C2n−2, then for some j, j′ ∈ [1,m] with j ̸= j′, the weight
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Figure 4: A {C5, C8}-magic labeling of GB(4, 5)

of C is

w(C) =
∑n−2

i=1 (f(v
j
i ) + f(vj

′

i )) +
∑n−3

i=1 (f(v
j
i v

j
i+1) + f(vj

′

i vj
′

i+1))

+f(s1) + f(s1v
j
1) + f(s1v

j′

1 ) + f(s2) + f(s2v
j
n−2) + f(s2v

j′

n−2)
= 2k + f(s1) + f(s2)

=

{
2k + 2m(2n− 3) + 3 if m is odd
2k +m(2n− 3) + 2 + ς if m is even

.

Since f is a bijection, the weight of every subgraph of G isomorphic to Cn is
equal to some fixed constant, and the weight of every subgraph isomorphic
to C2n−2 is equal to some fixed constant, we have proved the theorem.

5 Concluding remarks

We defined a quasi pair as a pair (n, r) such that an r-regular distance
quasi-magic graph of order n exists but an r-regular distance magic graph
of order n does not exist. We constructed quasi pairs for n ≡ 2 (mod 4) of
the forms:

• (n, 6) whenever n = 18 or n ≥ 26.

• (n, (2i − 1)a) and (n, (4j − 2)a) whenever n = ab, a > 1 is odd, and
b ≡ 2 (mod 4) for i ∈ [1, b− 1] and j ∈ [1, b−2

4 ].
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One direction forward is to complement the first item above by finding,
or ruling out, the existence of distance quasi-magic labelings for 6-regular
graphs of orders n ∈ {10, 14, 22}. Alternatively, since no odd-regular graph
is distance magic, it might be interesting to explore distance quasi-magic
labelings of odd-regular graphs with parameters other than those in the
second item above.
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