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4t-cycle decomposition of the 2-fold tensor
product (K, x K,)(2)

R. SAMPATHKUMAR AND T. SIVAKARAN*

Abstract. In this paper, it is shown that if ¢, m and n are positive integers
with t > 3 is odd, m > 3, n > 3 and mn > 4¢, then the 2-fold of the tensor
product of complete graphs K, and K, that is (K,, x K,)(2), admits
a decomposition into cycles of length 4¢, whenever m = 0,1 (mod t), or
n = 0,1 (mod t). For any prime p, a necessary and sufficient condition for
the existence of a 4p-cycle decomposition of (K, x K,)(2) is also obtained.

1 Introduction and definitions

For a simple graph G and a positive integer A, the graph G()) is the graph
obtained from G by replacing each of its edges by A parallel edges. For a
graph G and a positive integer A, AG denotes A mutually vertex disjoint
copies of G. Let Py (respectively, Ci) denote a path (respectively, cycle)
on k vertices. The complete graph on m vertices is denoted by K,,. For a
simple graph G, G denotes the complement of G.

If Hi,Hs,...,H, are edge-disjoint subgraphs of the graph G such that
EG) = Ule E(H;), then Hy, Ho, ..., Hy decompose G and we write G =
Hy® Hy® - ® Hy. If for each i, 7 € {1,2,...,k}, H; = H, then G has a
H-decomposition and we write H|G. A graph G has a C-decomposition or
a k-cycle decomposition whenever Cy|G. A k-regular graph G is Hamilton
cycle decomposable if G is decomposable into g Hamilton cycles when k is
even and into % Hamilton cycles together with a 1-factor when £ is odd.
For simple graphs G and H, the tensor product of G and H, denoted by
G x H, has vertex set V(G) x V(H) in which two vertices (g1,h1) and
(92, he) are adjacent whenever ¢g1g2 € E(G) and h1hy € E(H).
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4t-CYCLE DECOMPOSITION

For simple graphs G and H, and positive integers A\; and Ay, the tensor
product of G(A1) and H(Az2), denoted by G(A1) x H(A2), is (G x H)(A1A2).
In particular, for simple graphs G and H, and a positive integer A, the
tensor products G(A) x H and G x H(X) are (G x H)()).

Clearly, the tensor product is commutative and distributive over edge-
disjoint union of graphs; that is, G x H 2 H x G, and if

G=H ®Hy®---® Hy
then

GxH=(H xH)® (Hyx H) & & (Hy, x H).

Similarly, for simple graphs G and H, the wreath product of G and H,
denoted by Go H, has vertex set V(G) x V(H) in which two vertices (g1, h1)
and (ga, hg) are adjacent whenever g1go € E(G) or, g1 = g2 and hihy €

Clearly, K,, o K, is isomorphic to the complete m-partite graph in which
each partite set has n vertices and (K,, o K,,) — E(nK,,) = K, x K.

For graph theoretical terms not defined here see [12, 43].

For non-negative integers a and b with a < b, we denote the set
{a,a+1,a+2,...,b}
by [a,b].

Finding a Cj-decomposition of Ko, 41 or Ka, — F, where F' is a 1-factor of
Ka,, is completely settled by Alspach et al. [2] and Sajna [36]. An alter-
nate proof for a Cai11-decomposition of Ko, 1 is obtained by Buratti [19].
Alspach et al. [3] obtained a necessary and sufficient condition for the exis-
tence of a k-cycle decomposition of K,,(2). Smith [39] proved that the nec-
essary conditions are sufficient for the existence of a p-cycle decomposition
of K,,(\), where p > 3 is a prime. In [17, 18], it is proved that the necessary
conditions are sufficient for the existence of K, () to admit a decomposi-
tion into cycles of variable lengths, or into cycles of variable lengths and a
1-factor. In [41], Sotteau proved that Cax|K, , whenever the obvious nec-
essary conditions are satisfied. Asplund et al. [8] proved that K, ;(\) can
be decomposed into cycles of different even lengths whenever the necessary
conditions are satisfied. In [23], Hanani proved that C3|(K,,0K,)(\) when-
ever the necessary conditions are satisfied. Billington et al. [14] proved that
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Cs|(Km o K,,)()\) whenever the necessary conditions are satisfied. Further,
for k € {2,3,4}, Cavenagh [21], solved the Coj-decomposition problem for
complete multipartite graphs. Manikandan and Paulraja [28, 29] obtained
a necessary and sufficient condition for the existence of a C),-decomposition
of K,,0K,,, where p > 5is a prime. In [37, 38, 40], it is proved that the nec-
essary conditions for the existence of Cj-decomposition, k € {2p, 3p, p?},
of K, o K,, are sufficient. Further, in [35], Muthusamy and Shanmuga
Vadivu proved the existence of a Cy-decomposition of (K, o K, )()\) when-
ever k is even. Irrespective of the pairity of k, Buratti et al. [20] actually
solved the existence problem for a k-cycle decomposition of (K, o K,)(\)
whose cycle-set can be partitioned into 2-regular graphs containing all the
vertices except those belonging to one part. Horsley [24], studied the de-
compositions of various graphs into short even-length cycles. Recently,
in [10], Bahmanian and Sajna, developed two techniques layering and de-
tachment; using these techniques studied the existence of resolvable cycle
decompositions of complete multigraphs and complete equipartite multi-
graphs. Decompositions of (K,, o K,)(\) into cycles of variable lengths are
considered in [9].

A similar problem of decomposing (K, x K,)(\), a proper spanning sub-
graph of (K, o K,)()), into cycles of length k is considered here. In the
study of group divisible designs (respectively, modified group divisible de-
signs), the edge sets of K,, o0 K, (respectively, K,, x K,) is partitioned into
complete subgraphs, see [4, 5, 6, 7, 15, 16, 23, 26]. Assaf [5] used modified
group divisible designs to construct covering designs, packing designs and
group divisible designs with block size 5. For prime p > 5, existence of a
p-cycle decomposition of K,, x K, is effectively used to obtain a p-cycle
decomposition of K,, o K,, see [28, 29]. Further, Hamilton cycle decom-
position of K,, x K, is completely settled by Balakrishnan et al. [11].
Hence the graph K,, x K, is an important regular subgraph of K,, o K.
For related developments of the study of Hamilton cycle decompositions in
tensor products of complete multipartite graphs, or a complete graph and
a complete bipartite graph, or a complete bipartite graph and a complete
multipartite graph see [27, 30, 31]. Recently, Ganesamurthy et al. [22]
obtained a necessary and sufficient condition for the existence of a Cly,-
decomposition of K,, x K,, where p > 3 is a prime. In [34], Paulraja
and Sivakaran obtained a necessary and sufficient condition for the graph
(K, x K,)(2) to admit a k-cycle decomposition, where k € {p, 2p, 3p, p*}
and p is a prime.
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4t-CYCLE DECOMPOSITION

The necessary conditions for the existence of a Cys-decomposition of (K, X
K,)()) is that 4¢ divides % and A(m — 1)(n — 1), the degree
of each vertex of (K, x K,)()), is divisible by 2, the degree of each vertex
of C4t'

In this paper, we obtain the following results.

Theorem 1.1. Lett, m and n be positive integers with t > 3 is odd, m > 3,
n > 3 and mn > 4t. Then, the 2-fold of the tensor product of complete
graphs K, and K, that is, (K,, x K,)(2), has a 4t-cycle decomposition,
whenever m = 0,1 (mod t) or n =0,1 (mod t)

Theorem 1.2. Let p, m and n be positive integers with p > 2 is prime,
m > 3, n > 3 and mn > 4p. Then, Cup|(Kp x K,)(2) if and only if
4dplm(m — 1)n(n — 1).

2 Preliminary results

We use the following notation for the vertices of G x H. Let V(G) = {x1, x2,
oam} and V(H) = {y1,y2,.. ., yn}. Then, V(G x H) = {v] :i = 1,2,
,mand j = 1,2,...,n}, where v] = (z;,y,).
Write, for i € {1,2,...,m}, {;} x V(H) = {v},v2,...,v"} by V;, the
ith—layer of vertices of G x H correspondlng to x;.

Consider the complete bipartite graph Kn n with bipartition (V,, VS), where
rs € {1,2,...,m}, r# s, V,={vtv2,... 0"} and V; = {vl,02,... 07},
For £ € {0,1,..., n— 1}, let Fp(V;.,V5) = {vr it = 1,2,...,n}, where
addition ¢ + ¢ in the superscript of v{*¢ is taken modulo n with residues
1,2,...,n. The edge vtvi** € Fy(V,, V) is called an edge of length £ from
V,. to Vi. Note that, Fy(V,,Vs) = F,_4(V, V). So, the edge vtvit is also
called an edge of length n — £ from Vs to V,.. The rotation- dzstance of two

edges vitvh Tl vl2ul2tt in Fy(V,, Vi), where t1,t2 € {1,2,...,n}, of same
length ¢ from V,. to V; is defined as min{|t; — t2|,n — |t; — t2|}. Note that,
rotation-distances are in {1,2,...,[5]}.

Define a permutation o on V(G x H) (= ((G x H)(2))) as follows: for
everyi € {1,2,...,m}, o(v)) = v/t if j € {1,2,...,n—1} and o (v}") = v}.
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2.1 P2t+1 X K3
Lemma 2.1. Ift > 3 is an odd integer, then Cyt|(Par+1 X K3).

Proof. Let the path Py be x1@ox3 ... o1 and let V(K3) = {y1,y2,y3}-
Then
C = vi — V3VIVIUEUGVT -+ 03 o035 103
- U%t-&-l - vgtvgt—1”%15—2”%—3“%1&—4’0;—5 T Uﬁ’ug’vg - U%
is a cycle of length 4¢ in Py;4q x K3 containing: for each i € [1,2¢]
and for each ¢ € {1,2}, one edge of length ¢ from V; to V;;;. Hence,
{C,0(C),0%(C)} is a decomposition of P11 X Kj. O

2.2 (Prs X K¢)(2)
Lemma 2.2. Ift > 3 is an odd integer, then Cy|(Pry1 x Kg)(2).

Proof. Let the path P.y; be 12223 . .. x¢41. First, we find five 4¢-cycles of
(Piy1 X Kg)(2) as follows:

1 _,1_,2 32323 2 3 _ .4
Cyy = V1 — V3V3VIV5VEVT ... Vj_ Uy — Vpyq
6,4 ,6 ,4 6 4 6,4 _ 2
T UV 1V 2V 3V 4 V5 - - - U3V — U
6,4,6,4, 6 4 6 ,4_ .3
— VgU3V V5 VgV7 - .. Vy_1 Uy — Uy g

— VU] 0 U g v s vFus — v
(C}, contains: one edge of length 1, two edges of length 2 and one edge of
length 4 from V; to Va; for each i € [2,¢ — 1] and for each ¢ € {1,2,4,5},
one edge of length ¢ from V; to V,i1; two edges of length 1, one edge of
length 4 and one edge of length 5 from V; to Vii1),

2 _ .2 1,31 313 1 .3 _ .4
Clp = V] — VaU3V4U5Vg0Y ... Vy_ 1V} — Vi
56 .5 ,6 .5 6 5,61
T U U1V 2V 3V g V5 - - - U3UaUg

5,6,5 6 5 6 5 .6 _ .3
— VU3V VgUgVs + . . Vy_ 1y — Viyq

1,3 .1 .3 .1 .3 1,3 .2
T Vg U1V oV _3Up_gVp_5 - . - UgUp-V1
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4t-CYCLE DECOMPOSITION

(C3, contains: one edge of length 1, one edge of length 4 and two edges of
length 5 from V; to Va; for each i € [2,¢ — 1] and for each ¢ € {1,2,4,5},
one edge of length ¢ from V; to V;11; for each £ € {1,2,3,5}, one edge of
length ¢ from V; to Vi),

3 _ .1 _ 4,6 4 6 4 6 4 .6 _ .3
Cly = V] — VaU3VgUsVUGV7 - .. Vp V] — Vpyy
5,3 ,5 .3 .5 3 5,3 _ .6
T U U1V 2V 3Vp 4Vp5 .- - U3V — U
5,3,,5,3,5 3 5 .3 _ .5
— UgU3U4VEVgVY . .. V) 1V — Vi g

— UV VU3V g Vf_5 .. V3VS — U]
(C3, contains: for each £ € {3,5}, two edges of length ¢ from V; to Va; for
each ¢ € [2,t — 1] and for each ¢ € {2,4}, two edges of length ¢ from V; to
Viy1; for each £ € [1,4], one edge of length ¢ from V; to Viy1),

4 _ .1 3,43 4 3 4 3 4 2
Clip = V] — VU3V U5VaV7 .. . Uy Uy — Vi

6,1 .6 .1 .6 .1 6,1 4
T VgV Uy oV _3Vy_gVUp_5...V3Vg — Vg
6,16 1 6 6 .1 6
— 1121131141151)6117 R T

— UV UV g0y vy U3V — vy
(C4, contains: for each ¢ € [2,3], two edges of length £ from V; to Va; for
each ¢ € [2,t — 1] and for each ¢ € {1,5}, two edges of length ¢ from V; to
Viy1; for each £ € [2,5], one edge of length ¢ from V; to Viy1),
and
Clp = v — V3U30IVRVgs . vy 10} — vy

6,3 .6 .3 .6 .3 6,3 2
T VgV Uy oV _3Uy_gV_5...V3Vg — U3

6,363 3 6 6 .3 1
— VaU3Vg VsV U7 - - - Vp_1 Uy — Vpyg

- U?vt571")15272vt5737115274vt575 - V305 —v]
(C3, contains: for each £ € {1,4}, two edges of length ¢ from V; to Va; for
each i € [2,t — 1], four edges of length 3 from V; to V;41; for each £ € [2,5],
one edge of length ¢ from V; to Viy1).

(For each ¢ € [1,5], we pair the four edges of length ¢ from Vi to V2 as
follows: For ¢ = 1, the four edges are: viv: € C},, vivs € C3, and viv3,

vivs € C3;; pair these edges as (vivs,vivs) and (viv3,v3v3); both pairs
have rotation distance 1. For ¢ = 2, the four edges are: vjv3, 1)1122 € C},

and viv, viv§ € C4;; pair these edges as (vivs, vivy) and (viv, vivs); first

pair is of rotation-distance 1 and that for the second pair is 3. For £ = 3, the
four edges are: vivs, v8v3 € C3, and vivy, vivi € Cfy; pair these edges as
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(vivg, v803) and (vivy, vivl); first pair is of rotation- dlstance 1 and that for

the second pair is 3. For £ = 4, the four edges are: v3v$§ € C},, vlv2 € C3

and v{v3, v2v§ € C3,; pair these edges as (viv$, v1v3) and (viv, v?05); both
pairs have rotation-distance 1. For ¢ = 5, the four edges are: viv§, vivi €

C3, and v{v§, v$v5 € C3,; pair these edges as (viv§,v¥vd) and (viv§, viv3);

both pairs have rotation-distance 1.

For i € [2,t — 1] and for each ¢ € [1,5], we pair the four edges of length
¢ from V; to Vi as follows For ¢ = 1, the four edges are: viv} , € Cf,
vl € Cq and vivd , v? 1}1+1 € Ci,; pair these edges as (vZv}, ,,v7v9, )
and (vivl |, 0f z+1) both palrs have rotation- dlstance 3 For ¢ = 2, the
four edges are: vivd, , € C,, vivd, € CF and v}v), |, v ’L+1 € C3,; pair
these edges as (viv?, |, v{ v, 1) and (V}vl 4, v} Uz+1) first palr is of rotation-
distance 3 and that for the second pair is 1. For ¢ = 3, the four edges are:
vl vl vstH, vdv? | € CJ,; pair these edges as (viv), 1, vivd, ;)
and (vPv?, 4, 0007 4); both pairs have rotation- dlstance 1 For ¢ = 4, the
four edges are: v0v} | € Cf, vivl, € C§ and vlvd, |, vlvl | € CFy; pair
these edges as (viv}, |, viv} ) and (Vfvd 4,080}, ); first pair is of rotation-
distance 3 and that for the second pair is 1. For ¢ =5, the four edges are:
v, € C'4t, vl € C3 and vivd, , vf U7.+1 € (C4,; pair these edges as
(Vv 4,088, ) and (v}od, |, v} z+1) both pairs have rotation-distance 3.
For each ¢ € [1,5], we pair the four edges of length ¢ from V; to V;11 as
follows: For ¢ = 1, the four edges are: viv}, ,, vivi,, € Ci,, vivy,, € C3,
and viv}, | € C},; pair these edges as (vivy |, vivl, ) and (vivi, ,, vivP,);
both pairs have rotation-distance 1. For ¢ = 2, the four edges are: v{vy, 4
e Cj, vpvy, € C3,, vtvf_H € C}, and vtvf_H € C3;; pair these edges
as (vivd, v, ) and (v} vt_H, vfv2, ); first pair is of rotation-distance 1
and that for the second pair is 3. For £ = 3, the four edges are: vlv}, 4
€ C}, viv} , € C3, vtv?H € Cf, and vafﬂ € (3,; pair these edges
as (vPv} 4, vPvf, ) and (vf le, vjvi, ); first pair is of rotatlon—dlstance 3
and that for the second palr is 1. For ¢ = 4, the four edges are: viv} 4
€ Cly, viv}, € C3, v} ’Ut+1 € Cf, and v} Ut+1 € C},; pair these edges as
(vfvd, 1, v7v), ) and (viv?, |, vivl, ); both pairs have rotation-distance 1.
For ¢ = 5, the four edges are: vivy, | € Cf,, vjvy,, € Cq, vjvl,, € Cf,
and viv}, | € C};; pair these edges as (vivy 1, vvl ) and (vivf, ,, vivy,,);
both pairs have rotation-distance 1.)

Consider the sets F = {C}, | k = 1,2,3,4,5} and 2 = {CF},,0%(C¥,),
ot (Ch) | k = 1,2,3,4,5} of cycles of length 4t in (Pi; x Kg)(2). (For
every i € [1,t] and for every ¢ € [1,5], the union of the cycles in .# contains
four edges of length ¢ from V; to V11 and we have paired the edges in such
a way that no rotation-distance is 2.) It follows that 2 is a decomposition
of (Pt+1 X KG)(Q) O
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2.3 (Kt+1 X Kﬁ)(Z)
Lemma 2.3. Ift > 3 is an odd integer, then Cu|(Kiy1 % Kg)(2).

Proof. As tis odd, Ky is P;y1-decomposable, and hence
Kigy1n=P1®P1® - D Pypq.

Therefore,

(K1 % K)(2) = (Prg1 X Ke)(2) ® (Pry1 x K6)(2) S -+ & (Pry1 x Ke)(2).

By Lemma 2.2, Cys|(Pi41 X Kg)(2). Thus, Cy|(Kir1 X Kg)(2). O

2.4 (13,5+1 X K7)(2)
Lemma 2.4. Ift > 3 is an odd integer, then Cy|(Pit1 X K7)(2).

Proof. Let the path P11 be 12923 . .. 2441. First, we find three 4t-cycles
of (P11 X K7)(2) as follows:

1 _ .2 3.1.3.1, 31 1 .3 .1
Cp = V] — V503V V50507 . . . Vp_oUp_ 1 Uy

6 57 .5 .7 .5 .7 7..5,.7

T Vg1 T U U1V Uy 3V 4y Vg5 .- Vg U3V

6 _ 5,757 57 7 .5 7 _ .2
T Up T VU330 UsVg V7 - - - Uy oVp 1V — Vg

— VPV VU504V - - VgV U3-0]
(C}, contains: for each £ € {1,6}, two edges of length ¢ from V; to Va; for
each i € [2,¢ — 1] and for each £ € {2,5}, two edges of length ¢ from V; to
Viy1; for each £ € {1,2,5,6}, one edge of length ¢ from V; to Vi11),

2 _ .1 _ .54 5 4 5 4 4 .5 4
Cly = V1 — VU3V U5 VU7 - - . U} Uy

5 1,2 1 .2 1 2 2,1 2
T Vi1 — VUV oV 3V 4 Vi_5 - - - UgU3Vg

5 1,212 1, 2 2 1 2 1
T Up T VU330 Us Vg V7 - - - U oVp 1V — Vg

5,4 .5 .4 5 4 4.5 4 1
T Vg UV oUp_3VUs_4VU_5...VgU3VUy — Uy
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(C3, contains: for each ¢ € {3,4}, two edges of length ¢ from V; to Va; for
each ¢ € [2,t — 1] and for each ¢ € {1,6}, two edges of length ¢ from V; to
Vit1; for each £ € {1,3,4,6}, one edge of length ¢ from V; to Viy1),
and

Ol = v1 — VRUSUGUSUEU? . U]V 1 V) — vy

a7 4 .7 .4 7 74,7 2
T Vg UV _oUp_3Vs_4VU_5...UyVU3VUy — U3

4,74, 7, 4.7 7 4 7 2
— VaU3 VU5V V7 - . . Vp_oUp_ Uy — Uy

6,3 .6 3 6 3 3,6,3 1
T UV 1V 2V 3V g U5 - - - UgU3 V-

(C3, contains: for each £ € {2,5}, two edges of length ¢ from V; to Va; for
each i € [2,t — 1] and for each ¢ € {3,4}, two edges of length ¢ from V; to
Viy1; for each £ € {2,3,4,5}, one edge of length ¢ from V; to Viiq).

Consider the sets .# = {CF|k = 1,2,3} and 2 = {C},, o(C},), o%(C},),
a3(CF), o*(Ck), o°(Ck), o5(Ck)|k = 1,2,3} of cycles of length 4t in
(P41 % K7)(2). (For every ¢ € [1,t] and for every ¢ € [1,6], the union of
the cycles in .# contains two edges of length ¢ from V; to Vi41.) It follows
that 2 is a decomposition of (Piy1 x K7)(2). O

2.5 (Kt+1 X K7)(2)
Lemma 2.5. Ift > 3 is an odd integer, then Cy|(Ki+1 X K7)(2).

Proof. As tis odd, K,y is P;y1-decomposable, and hence
Kiy1=P1®P1®--- B Py

Hence,

(K41 X K7)(2) = (Pry1 x K7)(2) ® (P X K7)(2) @ - @ (Pryr x K7)(2).

By Lemma 2.4, Cys|(Pi1 X K7)(2). Thus, Cy|(Ker1 X K7)(2). O

2.6 (C; x K,)(2)

Let G be a simple graph with vertex set {x1,xa,...,2,}. For convenience,
we denote an edge e of G with ends x; and z;, ¢ < j, as z;z; (instead
of zjx;). Consider its 4-fold G(4). For any odd integer ¢, ¢ > 3, our aim
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is to find a Cy-decomposition Z of the 2-fold tensor product (G x Cy)(2)
from a specific Cy-decomposition %, of G(4). For this, first write G(4) as
Hy(2)® Hy—1(2) with Hy = H; 1 = G. If an edge e’ of G(4) is in H;(2), for
some i, 7 € {1,t — 1}, then we say that €’ is of length i. Hence, each edge e
of G duplicates in G(4) with two edges of length 1 and two edges of length
t — 1. Suppose there is a Cy-decomposition %y of G(4).

Construction: Let Cy be any cycle of length 4 in 2 and let C' be the
subgraph of (G x C})(2), arise out of Cy, by the procedure given below. Let
€’ be any edge of Cy and let e be the edge corresponding to ¢’ in G with
ends, say, x; and x;, ¢ < j. If ¢ is of length 1, then, for C, we take the ¢
edges in Fy(V;,V;). If the length of ¢’ is t — 1, then, for C, we take the ¢
edges in Fy_1(V;, Vj).

This construction yields for each cycle Cp in %y, a subgraph C of (G x
C4)(2) with 4t edges, and hence, we have a decomposition of (G x C)(2)
into subgraphs of size 4t.

Let C = zy, (1)x4, (€2)xiy (b3) i, (L4)x;, be any cycle in Zp; here the edge
Ty, § € [1,4], is of length £; and x;; = x,, i.e., i5 = 4;. For j € [1,4],
if ij < ij+1, then let oy = fj; otherwise ij > ij+1, let a = t — fj. As
4 4
aq, 0, 03,04 € {17t—1}, Z aj € {4,t+2,2t,3t—2,4t—4}. If Z Qa; #+ 2t,
j=1 j=1
4
then, as ¢ is odd, the subgraph C' is a cycle of length 4¢. Otherwise ) a; =

j=1
2t, then, C is tCy.

Ezamples: First we take G = Kg with V(Ks) = {1, z2, %3, T4, 25, T }. Set
= {562(1)1’6(1)1’4(1)585@71)1‘2, 1'3(1)1’6(1)15(1)1’1@71)1’3, 1’4(1)I6(1)I’1
(Daa(D)zy, xz3(1)zs5(t — D)aa(1)za(D)as, z1(t — Das(t — Das(L)aa(t — 1)y,
2o(t — Dzg(Dzy(t — V)ae(1)ae, z4(1)zs5(1)z1 (Dae(t — 1)y, x5(t — 1)z
(t — 1)$2(t — 1)1‘6(1)335, Z‘3(t — 1)3’52(t — 1)$6<t — 1)3’55<t — 1)5(}3, .’174(t — 1).%‘3
(Dag(t — Dy (t — Dy, x1(D)aza(t — Das(D)asz(1)z1, x2(1)zs(1)xr (1),
(t*l)l‘g, l‘4(t*1)l‘2(1)$5(t 1)1‘1(t 1):174, 1175(t 1)I6(t 1)1‘3(t 1)$4(t 1)
x5, 1(t —)ae(t —1)xsz(1)x2(1)x1}. Then, % is a 4-cycle decomposition of

4

K¢(4) = H1(2) ® H;—1(2) with the condition that Y «; € {t+ 2,3t — 2}.
j=1

Hence, by the above construction, Cy|(Kg x Ct)(2).

Next we take G = Ky with V(K7) = {x1, 29, 3, x4, x5, g, 27}. Set Ty =

{zo(D)ze(1)z3(1)a7(t — Dag, x3(t — Dar(1)zg(D)zq (t — 1)z3, 24(1)22(1)
x5t — Dz (Dzy, 25(1)ze(Dxe(1)zs(t — 1)as, x6(t — 1)ag(l)ar(t — 1)
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(t = 1), 27(t — D)aa(t — V) (¢ — Das(1)r, 21(t — Dao(t — st — 1)
z5(1)z1, x7(D)ze(t — Das(D)aa(t — Vg, 21 (1)zs(Dae(t — 1)y (t — 1)aq,
.Z'4(t — 1)$3(t — 1)$2(t — 1).’171(t — 1).’1747 $5(t — 1)372( ) (t — 1)1‘4(1)375, .%‘5( )
.237(t—1).1‘2(1)l‘4(t—1)l‘5, xﬁ(t—l)xl(t—l)xg( )%5( 1)$6, $7(1)l‘6(t 1)
$4(t - 1)I2(1)$7, Il(t - 1)1‘7(t - 1)$5(1)I3(1)I1, JCQ(t - 1)I4( )176(1)

(t — Do, x3(t — )zo (a7 (t — Das(D)xs, x3(t — Daze(l)as(t — 1)x4(1)x3,
ze(t — a7z (Va1 ()aa(t — Dz, x2(1)z1(1)a7(1)zs(1)ze, 4(1)zs(1)x1(1)
xg(l)a:4}. Then, % is a 4-cycle decomposition of K7(4) = Hy(2) ¢ H;—1(2)
with Z a; € {4,t+2,3t—2,4t—4}. Once again, by the above construction,

C4t|(K7 x Ct)(2).

The following theorems are used in the proof of Lemma 2.7.

Theorem 2.1. [41]. The bipartite graph K, s can be decomposed into cycles
of length 2k if and only if r and s are even, r > k, s > k, and 2k divides
rS.

Theorem 2.2. [3]. Suppose n and k are positive integers with 3 < k < n.
Then the complete multigraph K, (2) has a decomposition into k-cycles if
and only if kln(n — 1).

Theorem 2.3. [13]. The graph C, x Cy can be decomposed into two Hamil-
ton cycles if and only if at least one of r and s is odd.

Lemma 2.6. Ifn > 4 is an integer, then

Ci®dCy-- POy, if n=0or 1 (mod 4);
K,2)=4C,®C1 @ ®Cy® Kg(2), if n=2(mod 4);
Ci@CL - - ®Cy® K7(2), ifn=3(mod4).

Proof. If n =0 or 1 (mod 4), then, by Theorem 2.2, Cy4|K,,(2).

If n =2 (mod 4), then n = 4k 4 2 for some integer k > 1. Therefore

K, (2) = K442(2)
= K¢(2) ® K4(2) @ K4(2) @ -~ © K4(2)
k—1 times

B Ka(2) @Ksa(2)® - @ Kpa(2)

k—1 times
BKi42) P Kua(2)B- - Kaa(2).

(k—1)(k—2)/2 times

94



4t-CYCLE DECOMPOSITION

By Theorem 2.1, C4| K¢ 4 and Cy| K4 4, and hence Cy| K¢ 4(2) and Cy| K4 4(2).
Thus, K,(2) = Ks(2)®C 1 Cy d -+ @ Cy.

If n = 3 (mod 4), then n = 4k + 3 for some integer k > 1. Therefore

K, (2) = Ky43(2)
= K7(2) ® K4(2) @ K4(2) & - & K4(2)
k—1 times

B K742) @ Kr4(2)® - & K74(2)

k—1 times
2 K4,4(2) S K474(2) b D K474(2)
(k—1)(k—2)/2 times
=K7(2) ® K4(2) @ K4(2) @ - @ K4(2)

k—1 times
© K374(2) D K374(2) D---D K3’4(2)
k—1 times

O K142) @ Ky4(2) - D Ky4(2).
(k—1)+(k—1)(k—2)/2 times

By Theorem 2.2, C4|K4(2). By Theorem 2.1, Cy4|Ky 4. Hence Cy|K44(2).
Let {a1,a2,a3} and {b1,b2} be the partite sets of the bipartite graph
K39(2). Then the 4-cycles ajbiasbear, azbiasbaas and asbiaibsas decom-
poses K32(2). Thus, Cy| K3 2(2). Since K3 4(2) = K32(2)® K3.2(2), we have
C4|K374(2). Thus, Kn(Q) :K7(2)EBC4EBC4EB'”@C4. O

Lemma 2.7. Ift > 3 is an odd integer and n > 4, then Cy|(Cy x K,,)(2).

Proof. We consider three cases.

Case 1. n =0 or 1 (mod 4).
Then, by Lemma 2.6, K,,(2) =Cy ® Cy @ - - - & Cy. Now,

(Cy x Kp,)(2) = Cy x K,,(2)
=Cix (CydCy@---®Cy)
:(CtXC4)@(CtXC4)@"'@(CtXC4).

By Theorem 2.3, Cy|(Cy x Cy), and hence Cy|(Cy x K,,)(2).
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Case 2. n =2 (mod 4).
Then, by Lemma 2.6, K,,(2) =C1 & Cy & --- & Cy & K¢(2). Hence,

(Ct X Kn)(2) = Ct X Kn(2)
= (Ct X 04) D (Ct X 04) D---D (Ot X 04) D (Ct X KG(Q))
By Theorem 2.3, Cy|(C; x Cy). By the above example, Cy|(Kg % Ct)(2).

Since the tensor product is commutative, Kg x Cy = C; X Kg, and hence,
Cut|(Cr x K)(2), equivalently, Cut[(Cy x Kg(2)).

Hence, Cy|(Cy x K,,)(2).

Case 3. n =3 (mod 4).
Then, by Lemma 2.6, K,(2) =C4 ® Cy & --- ® Cy @ K7(2). Hence,

(Cy x K)(2) = Cy x Kp(2)
= (Ot X 04) D (Ct X 04) b---D (Ct X 04) D (Ct X K7(2))

By Theorem 2.3, Cy:|(Cy x Cy). By the above example, Cyt|(K7 x Ct)(2).
Since the tensor product is commutative, K7 x Cy = C} x K7, and hence,
Cut|(Cy x K7)(2), equivalently, Cy|(Cy x K7(2)).

Hence, Cy|(Cy x K,,)(2). O

2.7 (K2 x K,)(2)

Lemma 2.8. Ifn >4 and t > 2 are integers, and n = 0 (mod 2t), then
C4t|(K2 X Kn)(2)

Proof. Then, n = 2tk, where k > 1 is an integer. We consider two cases:

Case 1. k= 1.

First, write (K3 x Kot)(2) as (K2 X Kat) @ (K2 x Ka). Next, write the
first Ko x Ko as (Fl(Vl,VQ) U FQ(Vl,VQ)) D (F3(V1,V2) U F4(V1,V2))
D ... D (th_g(vl,‘/Q) @] th_g(vl,VQ)) D th_l(Vl,Vg) and the next
Ky x Ko as (FQ(Vl, ‘/2) @] Fg(Vl, ‘/2)) D (F4(V1, ‘/2) @] F5(V1,V2)) D ...
& (Far_a(Vi, Va) U Fay1(V, V) @ Fy (V1 Va). For i € {1,2,3,...,t—1},
both F2i—1(‘/1a ‘/Q)UFQZ‘(V]_, ‘/2) and ng(Vl, VQ)UF%_H (‘/1, ‘/2) are isomor-
phic to Cys. Also, Fo—1(V1, Vo) U Fy(V1, V2) is isomorphic to Cy;. Hence,
we have C4t|(K2 X KQ{»)(2)
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Case 2. k> 2.
Clearly, Ko X Kok can be decomposed into k copies each isomorphic to
Ky x Koy and k(k — 1) copies each isomorphic to Ko, 2,. Hence,

Ko x Kopy = (Ko x Kot) @ -+ @ (Ko x Ko)) @ (Koot ® -+ @ Koro1)s

and therefore,

(K2 X ngt)(Q) = ((Kz X th)(Q) D---D (K2 X th)(z))@
(Ka1,20)(2) B -+ - & (Kar,20)(2)).

By Case 1, Cy|(K2 x  Ky)(2). By Theorem 2.1, Cyy| Ko 24, and so
C4t|(K2t,2t)(2)~ Hence, O4t|(K2 X ngt)(Q). O

Lemma 2.9. Cg|(K2 X K5)(2) and 012|(K2 X K7)(2)

Proof. Let V(K2) = {x1,22}, V(K5) = {y1,92,...,ys} and V(K7) =
{ylay27 ---797}-

In (K2 x K5)(2), C' = viviviviviviviviv] is a cycle of length 8 and it
contains: for each ¢ € [1,4], two edges of length ¢ from V; to V. Hence,
{C",0(C"),02(C"),a3(C"),0*(C")} is a decomposition of (K3 x K5)(2).

In (K3 x K7)(2), C" = vivivivivivivv§vivivbulvl is a cycle of length 12
and it contains: for each ¢ € [1,6], two edges of length ¢ from Vi to Va.
Hence, {C",a(C"),02(C"),a3(C"),a*(C"),a5(C"),a5(C")} is a decompo-
sition of (K3 x K7)(2). O

28 K,,oK,

The following theorems are used in the proof of Lemma 2.10.

Theorem 2.4. (see [25]). Let m > 3 be an odd integer.

(1) If m = lor 3 (mod 6), then Cs|K,y,.

(2) If m =5 (mod 6), then K, can be decomposed into (m(m — 1) —20)/6
3-cycles and a Ks.

Theorem 2.5 is proven in [1] when m is an odd prime, but one can easily
see that the same proof works for any odd integer m.

Theorem 2.5. [1]. If m and k are at least 3, both of them are odd and
3 <k <m, then Cy o K., admits a C,,-factorization.
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Theorem 2.6. [23]. If m and n are at least 3, then Cs|(K,, o K,,) if and
only if (1) (m — 1)n is even and (2) 3|m(m — 1)n?.

Lemma 2.10. If m >3 and n > 3 are odd integers, then Cp|(Kp o K,,).

Proof. By Theorem 2.4, K,;, = K3® K3 ® --- @ K3, if m = lor 3 (mod 6)
and K,,, = K3 K3®---@® K3 @ K, if m = 5 (mod 6). Hence, K,,,0 K,, =
(K30K,)®(K30K,)®- - ®(K30K,),if m = lor 3 (mod 6) and K,,0K,, =
(K30K,)®(KzoK,)® - ®(K30K,)®(Ks0K,),if m=5(mod 6). To
prove the lemma, it is enough to prove that C,,|(K30K,,) and C,,|(K50K,,).
By Theorem 2.5, C,,|(K3 0 K,,). By Theorem 2.6, Cs|(K5 o K3). Hence, it
is enough to prove that C,|(Ks5 o K,,), for n > 5. As C5|K5, we have
KsoK, = (C50K,)® (CsoK,). By Theorem 2.5, C,,|(Cs o K,,). This
completes the proof. O

3 Proof of Theorem 1.1

We need following theorems and a lemma for the proof of Theorem 1.1.

Theorem 3.1. [2, 36]. Suppose n > 3 and k > 3 are positive integers.
Then the complete graph K, admits a decomposition into k-cycles if and
only if n >k, n is odd and k|(g)

Theorem 3.2. [42]. Let A,k and n be positive integers. There exists a
Py 11 -decomposition of K,(\) if and only if n > k+ 1 and An(n — 1) =
0 (mod 2k).

Lemma 3.1. [32]. If s > 3 is an odd integer, v > 3 and C,|G, then
Crs‘(G X K5+1).

Proof of Theorem 1.1.

By hypothesis, m = 0 (mod ¢), m = 1(mod ¢), n = 0(mod t) or n =
1 (mod t). Since the tensor product is commutative, we assume that m =0
or 1 (mod t). As ¢t > 3 and mn > 4t, we have (m,n) # (3,3). We consider
four cases.

Case 1. m > 51is odd and n > 4.
As m =0 or 1 (mod t), we have, by Theorem 3.1, C¢|K,,. Thus, K,,, =
C;®Ci@---®Cy. Hence, (K, x K,,)(2) = (CtdCy®---®Cy) X Kp,)(2)
= (Cy x Kp)(2) ® (Cy x Ky)(2) @ --- @ (Cy x Ky)(2). By Lemma 2.7,
Cyt|(Cy x K,,)(2). Thus, we have Cy (K, x Kp)(2).
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Case 2. m > 4 is even and n > 4.
We consider two subcases.

Subcase 2.1. m =0 (mod t).
As t is odd and m is even, we have m = 0 (mod 2t). Then, m = 2tk for
some integer k > 1.

If K =1, then K,, = Ko¢. Also, K,, = Ko ® Ko ® --- ® K>. Hence,
(K x K)(2) = (Kot X K2)(2) ® (Kot x K2)(2)® -+ & (Kot x Ka)(2).
By Lemma 2.8, Cy|(K2 x K9)(2), equivalently, Cy|(Ko x K3)(2).
Hence, Cu|(K x Ky)(2).

So, assume that k > 2. Then, K,, = Koy, = kKg; @ (K}, 0 Ko). Hence,
(K x K)(2) = k(Ko x K,)(2) ® (Kj 0o Kop) X K,,)(2). By the above
particular value for k, i.e., k = 1, we have Cy|(Kor x K,,)(2). To show
that Cy|(Km x K,,)(2), it is enough if we show that Cy|((Kp 0 Kor) X
K,,)(2). First, write Kj o Ko as an edge-disjoint union of k(k — 1)/2
copies of Ko 9;. By Theorem 2.1, Cyy| Koy 9, Now, write each copy of
Kot o; as an edge-disjoint union of ¢ copies of Cy;. Finally, write K, as
the edge-disjoint union of n(n — 1)/2 copies of Ks. Hence, it is enough
if we show that Cy|(Cy x K2)(2). Since Cyy X K5 is the disjoint union
of two copies of Cyt, Cyt|(Cyr X K3), and hence Cy|(Car X K2)(2).

Subcase 2.2. m =1 (mod t).
Then, m = tk 4+ 1 for some integer £ > 1. As t is odd and m is even,
we have k is odd.

If k=1, then (Kypq X K,))(2) = Ky X K,(2). By Lemma 2.6,

CidCy@-- DOy, if n=0or 1 (mod 4);
Kn(Q): C4@C4@"'EBC4EBK6(2), ian2(rn0d 4),
Ci®dCy®- - ®Cy D Kr(2), if n=3(mod 4);

To show that Cu|(Kiy1 x Kp)(2), it is enough if we show that
O4t|(Kt+1 X 04), C4t|(Kt+1 X KG(Q)) and C4t|(Kt+1 X K7(2)) AS C4|C4
and t > 3 is odd, we have, by Lemma 3.1, Cys|(Cy X Ki11). As Cy X
K1 =2 K11 x Cy, Oy (K1 % Cy).

By Lemmas 2.3 and 2.5, we have, respectively, Cy|(K;y1 X Kg)(2) and
Cat|(Key1x K7)(2). Hence, Cup|(Ky11 % K6(2)) and Cag|(Kp11 X K7(2)).
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So, assume that k > 3. We can write K,,, = Ky, y1 as

Kij10Kip10- @Ky ®(Ky, Oft),

k times

and hence,

(K X Kp)(2) =
(K1 X K)(2) @ (K1 x Kp)(2) ® -+ @ (Kiq1 x K5)(2)

k times

@ ((Ki o Ky) x Kp)(2).

By the above particular value for k, i.e., k = 1, we have Cy|(Ki41 X
K,)(2). To show that Cy| (K, x K,)(2), it is enough if we show that
Cu|(Kp o K¢) x K,)(2). By Lemma 2.10, C}|(K}, o K;). Hence, it is
enough if we show that Cy|(C; x K,,)(2). This follows from Lemma 2.7.

Case 3. m =3 and n > 4.

As3=m=0or 1 (mod t) and ¢t > 3, we have t = 3. Hence, we need to
show C15|(K3 X K,,)(2). Equivalently, we have to show Cs|(K3 x K, (2)).
Now, by Lemma 2.6,

Ci®dCL DDy, ifn=0or 1 (mod 4);
K,2)=¢C10Cs®---®dCy D Kg(2), ifn=2(mod 4);
C,Cy®---dCyL @ K7(2), ifn=3(mod4).

To show that Cia|(K3 x K,(2)), we have to show that Cys|(K3 x Cy),
012|(K3 X KG(Q)) and 012|(K3 X K7(2))

By Theorem 2.37 012|(Cg X C4), i.e., Clz|(K3 X 04)

Since K3 = Ko @ K3 @ Ko, to show that Ci2|(K5 x Kg(2)) (respectively,
C12| (K3 x K7(2))), it is enough if we show that Cya|(K2 x Kg(2)) (respec-
tively, C12|(K2 x K7(2))). By Lemma 2.8 (respectively, 2.9), C1a|(K2 X
K)(2) (respectively, Cia|(K2 x K7)(2)), equivalently, Cia|(K2 x K¢(2))
(respectively, Cra2|(K2 x K7(2))).

Case 4. m > 4 and n = 3.
We have to show that Cy|(K,, x K3)(2); equivalently, we have to show
that Cyt|(Kp, x K3(2)).

If m > 2¢+1 and 4¢|2m(m — 1), then, by Theorem 3.2, Py 1| K (2). So,
K (2) = Pot1 @ Poyy1 © - - @ Poyry1. Hence, (K, X K3)(2) = (Kn(2) ¥
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Kg) = (P2t+1 X Kg) D (P2t+1 X Kg) D---D (P2t+1 X Kg) By Lemma 2].,
Cut|(Pat+1%x K3), and hence, Cyy| (K, x K3)(2). Observe that 4¢|2m(m—1)
is same as 2t/m(m — 1); since m = 0 or 1 (mod ¢t) and ¢ is odd, this
divisibility is again same as 2|m(m — 1), which is clearly true. As m =0
or 1 (mod t), m equals kt or kt + 1 for some integer k > 1. The inequality
m > 2t+1 fails only for m € {¢,t+1, 2t}. So, assume that m € {¢,t+1, 2t}.

If m = 2t, then (Km X Kg)(2) = (th X Kg)(2) = (K2t X Kg)(2) X
(th X KQ)(2) X (th X KQ)(Q) By Lemma 28, C4t|(K2 X th)(Q), and
hence Cyt|(K2: x K2)(2). Thus, Cy|(Ky x K3)(2). Hence, assume that
m € {t,t + 1}. As mn > 4¢, we have 3m > 4t, and hence m # t; also
m=1t+1 only when m =4 and ¢t = 3.

Form =4 and t = 37 (K4 X K3)(2) = K4(2) X Kg = (04 X Kg) X (04 X
K3) x (Cy x K3); since Cy|K4(2), by Theorem 2.2. By Theorem 2.3,
012|(C4 X Cg) Hence, 012|(K4 X K3)(2)

This completes the proof.

4 Proof of Theorem 1.2

The proof of the necessity of Theorem 1.2 is obvious, and we prove the
sufficiency. We consider two cases.

Case 1. p > 3.
As p is an odd prime, the hypothesis, 4p|m(m — 1)n(n — 1), implies that
m =0 (mod p), m =1 (mod p), n =0 (mod p) or n =1 (mod p). Hence,
by Theorem 1.1, Cyp| (K, x K,,)(2).

Case 2. p=2.
We have to show that Cs|(K,, x K,)(2). As 8m(m — 1)n(n — 1), we
have, 4|m(m — 1) or 4|n(n —1). Since the tensor product is commutative,
we assume that 4|m(m — 1). Hence, 4|m or 4|(m — 1). We consider two
subcases. First, we claim the following.

Claim 1. For k > 2, Cg‘((Kk 0?4) X Kn)

First, write K o K4 as an edge-disjoint union of k(k — 1)/2 copies of
K, 4. By Theorem 2.1, Cs|Ky 4. Now, write each copy of K44 as an
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edge-disjoint union of 2 copies of Cg. Finally, write K,, as the edge-
disjoint union of n(n — 1)/2 copies of K5. Hence, to prove the claim,
it is enough if we show that Cs|(Cs x K3). Since Cs x Ko = 2Cs,
Cs‘(CS X KQ).

It follows from Claim 1 that

Claim 2. For k > 2, Cs|((Kk o K4) x K,,)(2).

Subcase 2.1. 4|m.
Then, m = 4k for some integer k > 1.

If £k =1, then

=Ky x K2)(2)® (K4 x K2)(2)® -+ - @ (K4 x K2)(2).

By Lemma 2.8, Cg|(K2 x K4)(2), and hence Cg|(K4 x K3)(2). Thus,
Cs|(Ky4 x Kp)(2). So, assume that k& > 2. Then

Ky, =Ky =kKs @ (Kk- OF4)a
and hence,
(K x Kp)(2) = k(Ky x K,)(2) @ (K o K4) x K,,)(2).

By the above particular value for £, i.e., k = 1, we have Cs|(Kyx Ky)(2).
Also, by Claim 2, Cs|((Kx o K4) x K,)(2).

Subcase 2.2. 4|(m —1).
Then m = 4k + 1 for some integer k > 1. If k = 1, then

(Kom X Kn)(2) = (K5 X K)(2) = (K5 x (Ky @ Ky @ -+ © K3))(2)
= (K5 X Kz)(2) (o) (K5 X KQ)(2) G- (K5 X KQ)(2)

By Lemma 2.9, Cg|(K2 x K5)(2), and hence, Cs|(K5 x K2)(2). Thus,
Cs| (K5 x K,,)(2). So, assume that k& > 2. We can write K, = Kqp41
as

Ks D Ks® - @ K5 ®(Ky 0 Ky),

k times
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and hence,

(Km x K,)(2) =
(K x K,)(2) @ (K5 x K,)(2) @ - (K5 x K,)(2)

k times

O (Kr o Ky) x K,)(2).

By the above particular value for &, i.e., k = 1, we have Cg|( K5 x K, )(2).
Again, by Claim 2, Cs|((Kj o K4) x K,)(2).

This completes the proof.

5 Conclusion

The following theorems are used in the proof of Corollary 5.1.
Theorem 5.1. [34]. If p > 3 is a prime, m,n > 3 and k € {p,2p, 3p, p*},
then Ci|(Km x Ky)(2) if and only if klm(m — 1)n(n — 1) and k < mn.

Theorem 5.2. [33]. If m,n > 3, then Cy4|(K, x Kp)(A) if and only if
4 (5)n(n — 1) and (K x K,)(A) is an even regular graph.

By Theorems 5.1, 5.2 and 1.2, we have:

Corollary 5.1. If m,n >3 and 3 < k < 15, then Cy|(K,, x K,)(2) if and
only if klm(m — )n(n — 1) and k < mn.
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