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4t-cycle decomposition of the 2-fold tensor

product (Km ×Kn)(2)

R. Sampathkumar and T. Sivakaran∗

Abstract. In this paper, it is shown that if t, m and n are positive integers
with t ≥ 3 is odd, m ≥ 3, n ≥ 3 and mn ≥ 4t, then the 2-fold of the tensor
product of complete graphs Km and Kn, that is (Km × Kn)(2), admits
a decomposition into cycles of length 4t, whenever m ≡ 0, 1 (mod t), or
n ≡ 0, 1 (mod t). For any prime p, a necessary and sufficient condition for
the existence of a 4p-cycle decomposition of (Km×Kn)(2) is also obtained.

1 Introduction and definitions

For a simple graph G and a positive integer λ, the graph G(λ) is the graph
obtained from G by replacing each of its edges by λ parallel edges. For a
graph G and a positive integer λ, λG denotes λ mutually vertex disjoint
copies of G. Let Pk (respectively, Ck) denote a path (respectively, cycle)
on k vertices. The complete graph on m vertices is denoted by Km. For a
simple graph G, G denotes the complement of G.

If H1, H2, . . . ,Hk are edge-disjoint subgraphs of the graph G such that
E(G) =

⋃k
i=1 E(Hi), then H1, H2, . . . ,Hk decompose G and we write G =

H1 ⊕H2 ⊕ · · · ⊕Hk. If for each i, i ∈ {1, 2, . . . , k}, Hi
∼= H, then G has a

H-decomposition and we write H|G. A graph G has a Ck-decomposition or
a k-cycle decomposition whenever Ck|G. A k-regular graph G is Hamilton
cycle decomposable if G is decomposable into k

2 Hamilton cycles when k is

even and into k−1
2 Hamilton cycles together with a 1-factor when k is odd.

For simple graphs G and H, the tensor product of G and H, denoted by
G × H, has vertex set V (G) × V (H) in which two vertices (g1, h1) and
(g2, h2) are adjacent whenever g1g2 ∈ E(G) and h1h2 ∈ E(H).
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For simple graphs G and H, and positive integers λ1 and λ2, the tensor
product of G(λ1) and H(λ2), denoted by G(λ1)×H(λ2), is (G×H)(λ1λ2).
In particular, for simple graphs G and H, and a positive integer λ, the
tensor products G(λ)×H and G×H(λ) are (G×H)(λ).

Clearly, the tensor product is commutative and distributive over edge-
disjoint union of graphs; that is, G×H ∼= H ×G, and if

G = H1 ⊕H2 ⊕ · · · ⊕Hk

then

G×H = (H1 ×H)⊕ (H2 ×H)⊕ · · · ⊕ (Hk ×H).

Similarly, for simple graphs G and H, the wreath product of G and H,
denoted by G◦H, has vertex set V (G)×V (H) in which two vertices (g1, h1)
and (g2, h2) are adjacent whenever g1g2 ∈ E(G) or, g1 = g2 and h1h2 ∈
E(H).

Clearly, Km ◦Kn is isomorphic to the complete m-partite graph in which
each partite set has n vertices and (Km ◦Kn)− E(nKm) ∼= Km ×Kn.

For graph theoretical terms not defined here see [12, 43].

For non-negative integers a and b with a < b, we denote the set

{a, a+ 1, a+ 2, . . . , b}
by [a, b].

Finding a Ck-decomposition of K2n+1 or K2n −F, where F is a 1-factor of
K2n, is completely settled by Alspach et al. [2] and Šajna [36]. An alter-
nate proof for a C2k+1-decomposition of K2n+1 is obtained by Buratti [19].
Alspach et al. [3] obtained a necessary and sufficient condition for the exis-
tence of a k-cycle decomposition of Kn(2). Smith [39] proved that the nec-
essary conditions are sufficient for the existence of a p-cycle decomposition
of Kn(λ), where p ≥ 3 is a prime. In [17, 18], it is proved that the necessary
conditions are sufficient for the existence of Kn(λ) to admit a decomposi-
tion into cycles of variable lengths, or into cycles of variable lengths and a
1-factor. In [41], Sotteau proved that C2k|Ka,b whenever the obvious nec-
essary conditions are satisfied. Asplund et al. [8] proved that Ka,b(λ) can
be decomposed into cycles of different even lengths whenever the necessary
conditions are satisfied. In [23], Hanani proved that C3|(Km◦Kn)(λ) when-
ever the necessary conditions are satisfied. Billington et al. [14] proved that
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C5|(Km ◦Kn)(λ) whenever the necessary conditions are satisfied. Further,
for k ∈ {2, 3, 4}, Cavenagh [21], solved the C2k-decomposition problem for
complete multipartite graphs. Manikandan and Paulraja [28, 29] obtained
a necessary and sufficient condition for the existence of a Cp-decomposition
of Km◦Kn, where p ≥ 5 is a prime. In [37, 38, 40], it is proved that the nec-
essary conditions for the existence of Ck-decomposition, k ∈ {2p, 3p, p2},
of Km ◦ Kn are sufficient. Further, in [35], Muthusamy and Shanmuga
Vadivu proved the existence of a Ck-decomposition of (Km ◦Kn)(λ) when-
ever k is even. Irrespective of the pairity of k, Buratti et al. [20] actually
solved the existence problem for a k-cycle decomposition of (Km ◦Kn)(λ)
whose cycle-set can be partitioned into 2-regular graphs containing all the
vertices except those belonging to one part. Horsley [24], studied the de-
compositions of various graphs into short even-length cycles. Recently,
in [10], Bahmanian and Šajna, developed two techniques layering and de-
tachment; using these techniques studied the existence of resolvable cycle
decompositions of complete multigraphs and complete equipartite multi-
graphs. Decompositions of (Km ◦Kn)(λ) into cycles of variable lengths are
considered in [9].

A similar problem of decomposing (Km ×Kn)(λ), a proper spanning sub-
graph of (Km ◦ Kn)(λ), into cycles of length k is considered here. In the
study of group divisible designs (respectively, modified group divisible de-
signs), the edge sets of Km ◦Kn (respectively, Km×Kn) is partitioned into
complete subgraphs, see [4, 5, 6, 7, 15, 16, 23, 26]. Assaf [5] used modified
group divisible designs to construct covering designs, packing designs and
group divisible designs with block size 5. For prime p ≥ 5, existence of a
p-cycle decomposition of Km × Kn is effectively used to obtain a p-cycle
decomposition of Km ◦ Kn, see [28, 29]. Further, Hamilton cycle decom-
position of Km × Kn is completely settled by Balakrishnan et al. [11].
Hence the graph Km ×Kn is an important regular subgraph of Km ◦Kn.
For related developments of the study of Hamilton cycle decompositions in
tensor products of complete multipartite graphs, or a complete graph and
a complete bipartite graph, or a complete bipartite graph and a complete
multipartite graph see [27, 30, 31]. Recently, Ganesamurthy et al. [22]
obtained a necessary and sufficient condition for the existence of a C4p-
decomposition of Km × Kn, where p ≥ 3 is a prime. In [34], Paulraja
and Sivakaran obtained a necessary and sufficient condition for the graph
(Km ×Kn)(2) to admit a k-cycle decomposition, where k ∈ {p, 2p, 3p, p2}
and p is a prime.
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The necessary conditions for the existence of a C4t-decomposition of (Km×
Kn)(λ) is that 4t divides λmn(m−1)(n−1)

2 and λ(m − 1)(n − 1), the degree
of each vertex of (Km ×Kn)(λ), is divisible by 2, the degree of each vertex
of C4t.

In this paper, we obtain the following results.

Theorem 1.1. Let t, m and n be positive integers with t ≥ 3 is odd, m ≥ 3,
n ≥ 3 and mn ≥ 4t. Then, the 2-fold of the tensor product of complete
graphs Km and Kn, that is, (Km ×Kn)(2), has a 4t-cycle decomposition,
whenever m ≡ 0, 1 (mod t) or n ≡ 0, 1 (mod t)

Theorem 1.2. Let p, m and n be positive integers with p ≥ 2 is prime,
m ≥ 3, n ≥ 3 and mn ≥ 4p. Then, C4p|(Km × Kn)(2) if and only if
4p|m(m− 1)n(n− 1).

2 Preliminary results

We use the following notation for the vertices of G×H. Let V (G) = {x1, x2,
. . . , xm} and V (H) = {y1, y2, . . . , yn}. Then, V (G ×H) = {vji : i = 1, 2,

. . . , m and j = 1, 2, . . . , n}, where vji = (xi, yj).

Write, for i ∈ {1, 2, . . . ,m}, {xi} × V (H) = {v1i , v2i , . . . , vni } by Vi, the

ith-layer of vertices of G×H corresponding to xi.

Consider the complete bipartite graph Kn,n with bipartition (Vr, Vs), where
r, s ∈ {1, 2, . . . ,m}, r ̸= s, Vr = {v1r , v2r , . . . , vnr } and Vs = {v1s , v2s , . . . , vns }.
For ℓ ∈ {0, 1, . . . , n − 1}, let Fℓ(Vr, Vs) = {vtrvt+ℓ

s |t = 1, 2, . . . , n}, where
addition t + ℓ in the superscript of vt+ℓ

s is taken modulo n with residues
1, 2, . . . , n. The edge vtrv

t+ℓ
s ∈ Fℓ(Vr, Vs) is called an edge of length ℓ from

Vr to Vs. Note that, Fℓ(Vr, Vs) = Fn−ℓ(Vs, Vr). So, the edge vtrv
t+ℓ
s is also

called an edge of length n − ℓ from Vs to Vr. The rotation-distance of two
edges vt1r vt1+ℓ

s , vt2r vt2+ℓ
s in Fℓ(Vr, Vs), where t1, t2 ∈ {1, 2, . . . , n}, of same

length ℓ from Vr to Vs is defined as min{|t1 − t2|, n− |t1 − t2|}. Note that,
rotation-distances are in {1, 2, . . . , ⌊n

2 ⌋}.

Define a permutation σ on V (G × H) (= V ((G × H)(2))) as follows: for
every i ∈ {1, 2, . . . ,m}, σ(vji ) = vj+1

i if j ∈ {1, 2, . . . , n−1} and σ(vni ) = v1i .

4t-cycle decomposition

87



2.1 P2t+1 × K3

Lemma 2.1. If t ≥ 3 is an odd integer, then C4t|(P2t+1 ×K3).

Proof. Let the path P2t+1 be x1x2x3 . . . x2t+1 and let V (K3) = {y1, y2, y3}.
Then

C = v11 − v32v
2
3v

3
4v

2
5v

3
6v

2
7 · · · v32t−2v

2
2t−1v

3
2t

− v12t+1 − v22tv
3
2t−1v

2
2t−2v

3
2t−3v

2
2t−4v

3
2t−5 · · · v24v33v22 − v11

is a cycle of length 4t in P2t+1 × K3 containing: for each i ∈ [1, 2t]
and for each ℓ ∈ {1, 2}, one edge of length ℓ from Vi to Vi+1. Hence,
{C, σ(C), σ2(C)} is a decomposition of P2t+1 ×K3.

2.2 (Pt+1 × K6)(2)

Lemma 2.2. If t ≥ 3 is an odd integer, then C4t|(Pt+1 ×K6)(2).

Proof. Let the path Pt+1 be x1x2x3 . . . xt+1. First, we find five 4t-cycles of
(Pt+1 ×K6)(2) as follows:

C1
4t = v11 − v22v

3
3v

2
4v

3
5v

2
6v

3
7 . . . v

2
t−1v

3
t − v4t+1

− v6t v
4
t−1v

6
t−2v

4
t−3v

6
t−4v

4
t−5 . . . v

6
3v

4
2 − v21

− v62v
4
3v

6
4v

4
5v

6
6v

4
7 . . . v

6
t−1v

4
t − v3t+1

− v2t v
3
t−1v

2
t−2v

3
t−3v

2
t−4v

3
t−5 . . . v

2
3v

3
2 − v11

(C1
4t contains: one edge of length 1, two edges of length 2 and one edge of

length 4 from V1 to V2; for each i ∈ [2, t − 1] and for each ℓ ∈ {1, 2, 4, 5},
one edge of length ℓ from Vi to Vi+1; two edges of length 1, one edge of
length 4 and one edge of length 5 from Vt to Vt+1),

C2
4t = v21 − v12v

3
3v

1
4v

3
5v

1
6v

3
7 . . . v

1
t−1v

3
t − v4t+1

− v5t v
6
t−1v

5
t−2v

6
t−3v

5
t−4v

6
t−5 . . . v

5
3v

6
2v

1
1

− v52v
6
3v

5
4v

6
5v

5
6v

6
7 . . . v

5
t−1v

6
t − v3t+1

− v1t v
3
t−1v

1
t−2v

3
t−3v

1
t−4v

3
t−5 . . . v

1
3v

3
2-v

2
1

Sampathkumar and Sivakaran

88



(C2
4t contains: one edge of length 1, one edge of length 4 and two edges of

length 5 from V1 to V2; for each i ∈ [2, t − 1] and for each ℓ ∈ {1, 2, 4, 5},
one edge of length ℓ from Vi to Vi+1; for each ℓ ∈ {1, 2, 3, 5}, one edge of
length ℓ from Vt to Vt+1),

C3
4t = v11 − v42v

6
3v

4
4v

6
5v

4
6v

6
7 . . . v

4
t−1v

6
t − v3t+1

− v5t v
3
t−1v

5
t−2v

3
t−3v

5
t−4v

3
t−5 . . . v

5
3v

3
2 − v61

− v52v
3
3v

5
4v

3
5v

5
6v

3
7 . . . v

5
t−1v

3
t − v5t+1

− v4t v
6
t−1v

4
t−2v

6
t−3v

4
t−4v

6
t−5 . . . v

4
3v

6
2 − v11

(C3
4t contains: for each ℓ ∈ {3, 5}, two edges of length ℓ from V1 to V2; for

each i ∈ [2, t− 1] and for each ℓ ∈ {2, 4}, two edges of length ℓ from Vi to
Vi+1; for each ℓ ∈ [1, 4], one edge of length ℓ from Vt to Vt+1),

C4
4t = v11 − v32v

4
3v

3
4v

4
5v

3
6v

4
7 . . . v

3
t−1v

4
t − v2t+1

− v6t v
1
t−1v

6
t−2v

1
t−3v

6
t−4v

1
t−5 . . . v

6
3v

1
2 − v41

− v62v
1
3v

6
4v

1
5v

6
6v

1
7 . . . v

6
t−1v

1
t − v6t+1

− v3t v
4
t−1v

3
t−2v

4
t−3v

3
t−4v

4
t−5 . . . v

3
3v

4
2 − v11

(C4
4t contains: for each ℓ ∈ [2, 3], two edges of length ℓ from V1 to V2; for

each i ∈ [2, t− 1] and for each ℓ ∈ {1, 5}, two edges of length ℓ from Vi to
Vi+1; for each ℓ ∈ [2, 5], one edge of length ℓ from Vt to Vt+1),
and

C5
4t = v11 − v22v

5
3v

2
4v

5
5v

2
6v

5
7 . . . v

2
t−1v

5
t − v2t+1

− v6t v
3
t−1v

6
t−2v

3
t−3v

6
t−4v

3
t−5 . . . v

6
3v

3
2 − v21

− v62v
3
3v

6
4v

3
5v

3
6v

6
7 . . . v

6
t−1v

3
t − v1t+1

− v2t v
5
t−1v

2
t−2v

5
t−3v

2
t−4v

5
t−5 . . . v

2
3v

5
2 − v11

(C5
4t contains: for each ℓ ∈ {1, 4}, two edges of length ℓ from V1 to V2; for

each i ∈ [2, t− 1], four edges of length 3 from Vi to Vi+1; for each ℓ ∈ [2, 5],
one edge of length ℓ from Vt to Vt+1).

(For each ℓ ∈ [1, 5], we pair the four edges of length ℓ from V1 to V2 as
follows: For ℓ = 1, the four edges are: v11v

2
2 ∈ C1

4t, v
2
1v

3
2 ∈ C2

4t and v11v
2
2 ,

v21v
3
2 ∈ C5

4t; pair these edges as (v11v
2
2 , v

2
1v

3
2) and (v11v

2
2 , v

2
1v

3
2); both pairs

have rotation-distance 1. For ℓ = 2, the four edges are: v11v
3
2 , v

2
1v

4
2 ∈ C1

4t

and v11v
3
2 , v

4
1v

6
2 ∈ C4

4t; pair these edges as (v
1
1v

3
2 , v

2
1v

4
2) and (v11v

3
2 , v

4
1v

6
2); first

pair is of rotation-distance 1 and that for the second pair is 3. For ℓ = 3, the
four edges are: v11v

4
2 , v

6
1v

3
2 ∈ C3

4t and v11v
4
2 , v

4
1v

1
2 ∈ C4

4t; pair these edges as
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(v11v
4
2 , v

6
1v

3
2) and (v11v

4
2 , v

4
1v

1
2); first pair is of rotation-distance 1 and that for

the second pair is 3. For ℓ = 4, the four edges are: v21v
6
2 ∈ C1

4t, v
1
1v

5
2 ∈ C2

4t

and v11v
5
2 , v

2
1v

6
2 ∈ C5

4t; pair these edges as (v
2
1v

6
2 , v

1
1v

5
2) and (v11v

5
2 , v

2
1v

6
2); both

pairs have rotation-distance 1. For ℓ = 5, the four edges are: v11v
6
2 , v

2
1v

1
2 ∈

C2
4t and v11v

6
2 , v

6
1v

5
2 ∈ C3

4t; pair these edges as (v
1
1v

6
2 , v

2
1v

1
2) and (v11v

6
2 , v

6
1v

5
2);

both pairs have rotation-distance 1.

For i ∈ [2, t − 1] and for each ℓ ∈ [1, 5], we pair the four edges of length
ℓ from Vi to Vi+1 as follows: For ℓ = 1, the four edges are: v2i v

3
i+1 ∈ C1

4t,
v5i v

6
i+1 ∈ C2

4t and v3i v
4
i+1, v

6
i v

1
i+1 ∈ C4

4t; pair these edges as (v2i v
3
i+1, v

5
i v

6
i+1)

and (v3i v
4
i+1, v

6
i v

1
i+1); both pairs have rotation-distance 3. For ℓ = 2, the

four edges are: v4i v
6
i+1 ∈ C1

4t, v
1
i v

3
i+1 ∈ C2

4t and v3i v
5
i+1, v

4
i v

6
i+1 ∈ C3

4t; pair
these edges as (v4i v

6
i+1, v

1
i v

3
i+1) and (v3i v

5
i+1, v

4
i v

6
i+1); first pair is of rotation-

distance 3 and that for the second pair is 1. For ℓ = 3, the four edges are:
v2i v

5
i+1, v

3
i v

6
i+1, v

5
i v

2
i+1, v

6
i v

3
i+1 ∈ C5

4t; pair these edges as (v2i v
5
i+1, v

3
i v

6
i+1)

and (v5i v
2
i+1, v

6
i v

3
i+1); both pairs have rotation-distance 1. For ℓ = 4, the

four edges are: v6i v
4
i+1 ∈ C1

4t, v
3
i v

1
i+1 ∈ C2

4t and v5i v
3
i+1, v

6
i v

4
i+1 ∈ C3

4t; pair
these edges as (v6i v

4
i+1, v

3
i v

1
i+1) and (v5i v

3
i+1, v

6
i v

4
i+1); first pair is of rotation-

distance 3 and that for the second pair is 1. For ℓ = 5, the four edges are:
v3i v

2
i+1 ∈ C1

4t, v
6
i v

5
i+1 ∈ C2

4t and v1i v
6
i+1, v

4
i v

3
i+1 ∈ C4

4t; pair these edges as
(v3i v

2
i+1, v

6
i v

5
i+1) and (v1i v

6
i+1, v

4
i v

3
i+1); both pairs have rotation-distance 3.

For each ℓ ∈ [1, 5], we pair the four edges of length ℓ from Vt to Vt+1 as
follows: For ℓ = 1, the four edges are: v2t v

3
t+1, v

3
t v

4
t+1 ∈ C1

4t, v
3
t v

4
t+1 ∈ C2

4t

and v4t v
5
t+1 ∈ C3

4t; pair these edges as (v
2
t v

3
t+1, v

3
t v

4
t+1) and (v3t v

4
t+1, v

4
t v

5
t+1);

both pairs have rotation-distance 1. For ℓ = 2, the four edges are: v1t v
3
t+1

∈ C2
4t, v3t v

5
t+1 ∈ C3

4t, v6t v
2
t+1 ∈ C4

4t and v6t v
2
t+1 ∈ C5

4t; pair these edges
as (v1t v

3
t+1, v

6
t v

2
t+1) and (v3t v

5
t+1, v

6
t v

2
t+1); first pair is of rotation-distance 1

and that for the second pair is 3. For ℓ = 3, the four edges are: v6t v
3
t+1

∈ C2
4t, v6t v

3
t+1 ∈ C3

4t, v3t v
6
t+1 ∈ C4

4t and v5t v
2
t+1 ∈ C5

4t; pair these edges
as (v6t v

3
t+1, v

3
t v

6
t+1) and (v6t v

3
t+1, v

5
t v

2
t+1); first pair is of rotation-distance 3

and that for the second pair is 1. For ℓ = 4, the four edges are: v6t v
4
t+1

∈ C1
4t, v

5
t v

3
t+1 ∈ C3

4t, v
4
t v

2
t+1 ∈ C4

4t and v3t v
1
t+1 ∈ C5

4t; pair these edges as
(v6t v

4
t+1, v

5
t v

3
t+1) and (v4t v

2
t+1, v

3
t v

1
t+1); both pairs have rotation-distance 1.

For ℓ = 5, the four edges are: v4t v
3
t+1 ∈ C1

4t, v
5
t v

4
t+1 ∈ C2

4t, v
1
t v

6
t+1 ∈ C4

4t

and v2t v
1
t+1 ∈ C5

4t; pair these edges as (v
4
t v

3
t+1, v

5
t v

4
t+1) and (v1t v

6
t+1, v

2
t v

1
t+1);

both pairs have rotation-distance 1.)

Consider the sets F = {Ck
4t | k = 1, 2, 3, 4, 5} and D = {Ck

4t, σ
2(Ck

4t),
σ4(Ck

4t) | k = 1, 2, 3, 4, 5} of cycles of length 4t in (Pt+1 × K6)(2). (For
every i ∈ [1, t] and for every ℓ ∈ [1, 5], the union of the cycles in F contains
four edges of length ℓ from Vi to Vi+1 and we have paired the edges in such
a way that no rotation-distance is 2.) It follows that D is a decomposition
of (Pt+1 ×K6)(2).
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2.3 (Kt+1 × K6)(2)

Lemma 2.3. If t ≥ 3 is an odd integer, then C4t|(Kt+1 ×K6)(2).

Proof. As t is odd, Kt+1 is Pt+1-decomposable, and hence

Kt+1 = Pt+1 ⊕ Pt+1 ⊕ · · · ⊕ Pt+1.

Therefore,

(Kt+1 ×K6)(2) = (Pt+1 ×K6)(2)⊕ (Pt+1 ×K6)(2)⊕ · · · ⊕ (Pt+1 ×K6)(2).

By Lemma 2.2, C4t|(Pt+1 ×K6)(2). Thus, C4t|(Kt+1 ×K6)(2).

2.4 (Pt+1 × K7)(2)

Lemma 2.4. If t ≥ 3 is an odd integer, then C4t|(Pt+1 ×K7)(2).

Proof. Let the path Pt+1 be x1x2x3 . . . xt+1. First, we find three 4t-cycles
of (Pt+1 ×K7)(2) as follows:

C1
4t = v21 − v32v

1
3v

3
4v

1
5v

3
6v

1
7 . . . v

1
t−2v

3
t−1v

1
t

− v6t+1 − v5t v
7
t−1v

5
t−2v

7
t−3v

5
t−4v

7
t−5 . . . v

7
4v

5
3v

7
2

− v61 − v52v
7
3v

5
4v

7
5v

5
6v

7
7 . . . v

7
t−2v

5
t−1v

7
t − v2t+1

− v3t v
1
t−1v

3
t−2v

1
t−3v

3
t−4v

1
t−5 . . . v

1
4v

3
3v

1
2-v

2
1

(C1
4t contains: for each ℓ ∈ {1, 6}, two edges of length ℓ from V1 to V2; for

each i ∈ [2, t− 1] and for each ℓ ∈ {2, 5}, two edges of length ℓ from Vi to
Vi+1; for each ℓ ∈ {1, 2, 5, 6}, one edge of length ℓ from Vt to Vt+1),

C2
4t = v11 − v52v

4
3v

5
4v

4
5v

5
6v

4
7 . . . v

4
t−2v

5
t−1v

4
t

− v5t+1 − v1t v
2
t−1v

1
t−2v

2
t−3v

1
t−4v

2
t−5 . . . v

2
4v

1
3v

2
2

− v51 − v12v
2
3v

1
4v

2
5v

1
6v

2
7 . . . v

2
t−2v

1
t−1v

2
t − v1t+1

− v5t v
4
t−1v

5
t−2v

4
t−3v

5
t−4v

4
t−5 . . . v

4
4v

5
3v

4
2 − v11
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(C2
4t contains: for each ℓ ∈ {3, 4}, two edges of length ℓ from V1 to V2; for

each i ∈ [2, t− 1] and for each ℓ ∈ {1, 6}, two edges of length ℓ from Vi to
Vi+1; for each ℓ ∈ {1, 3, 4, 6}, one edge of length ℓ from Vt to Vt+1),
and

C3
4t = v11 − v62v

3
3v

6
4v

3
5v

6
6v

3
7 . . . v

3
t−2v

6
t−1v

3
t − v1t+1

− v4t v
7
t−1v

4
t−2v

7
t−3v

4
t−4v

7
t−5 . . . v

7
4v

4
3v

7
2 − v21

− v42v
7
3v

4
4v

7
5v

4
6v

7
7 . . . v

7
t−2v

4
t−1v

7
t − v2t+1

− v6t v
3
t−1v

6
t−2v

3
t−3v

6
t−4v

3
t−5 . . . v

3
4v

6
3v

3
2-v

1
1

(C3
4t contains: for each ℓ ∈ {2, 5}, two edges of length ℓ from V1 to V2; for

each i ∈ [2, t − 1] and for each ℓ ∈ {3, 4}, two edges of length ℓ from Vi to
Vi+1; for each ℓ ∈ {2, 3, 4, 5}, one edge of length ℓ from Vt to Vt+1).

Consider the sets F = {Ck
4t|k = 1, 2, 3} and D = {Ck

4t, σ(C
k
4t), σ

2(Ck
4t),

σ3(Ck
4t), σ

4(Ck
4t), σ

5(Ck
4t), σ

6(Ck
4t)|k = 1, 2, 3} of cycles of length 4t in

(Pt+1 × K7)(2). (For every i ∈ [1, t] and for every ℓ ∈ [1, 6], the union of
the cycles in F contains two edges of length ℓ from Vi to Vi+1.) It follows
that D is a decomposition of (Pt+1 ×K7)(2).

2.5 (Kt+1 × K7)(2)

Lemma 2.5. If t ≥ 3 is an odd integer, then C4t|(Kt+1 ×K7)(2).

Proof. As t is odd, Kt+1 is Pt+1-decomposable, and hence

Kt+1 = Pt+1 ⊕ Pt+1 ⊕ · · · ⊕ Pt+1.

Hence,

(Kt+1 ×K7)(2) = (Pt+1 ×K7)(2)⊕ (Pt+1 ×K7)(2)⊕ · · · ⊕ (Pt+1 ×K7)(2).

By Lemma 2.4, C4t|(Pt+1 ×K7)(2). Thus, C4t|(Kt+1 ×K7)(2).

2.6 (Ct × Kn)(2)

Let G be a simple graph with vertex set {x1, x2, . . . , xn}. For convenience,
we denote an edge e of G with ends xi and xj , i < j, as xixj (instead
of xjxi). Consider its 4-fold G(4). For any odd integer t, t ≥ 3, our aim
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is to find a C4t-decomposition D of the 2-fold tensor product (G × Ct)(2)
from a specific C4-decomposition D0 of G(4). For this, first write G(4) as
H1(2)⊕Ht−1(2) with H1

∼= Ht−1
∼= G. If an edge e′ of G(4) is in Hi(2), for

some i, i ∈ {1, t− 1}, then we say that e′ is of length i. Hence, each edge e
of G duplicates in G(4) with two edges of length 1 and two edges of length
t− 1. Suppose there is a C4-decomposition D0 of G(4).

Construction: Let C0 be any cycle of length 4 in D0 and let C be the
subgraph of (G×Ct)(2), arise out of C0, by the procedure given below. Let
e′ be any edge of C0 and let e be the edge corresponding to e′ in G with
ends, say, xi and xj , i < j. If e′ is of length 1, then, for C, we take the t
edges in F1(Vi, Vj). If the length of e′ is t − 1, then, for C, we take the t
edges in Ft−1(Vi, Vj).

This construction yields for each cycle C0 in D0, a subgraph C of (G ×
Ct)(2) with 4t edges, and hence, we have a decomposition of (G × Ct)(2)
into subgraphs of size 4t.

Let C = xi1(ℓ1)xi2(ℓ2)xi3(ℓ3)xi4(ℓ4)xi1 be any cycle in D0; here the edge
xijxij+1

, j ∈ [1, 4], is of length ℓj and xi5 = xi1 , i.e., i5 = i1. For j ∈ [1, 4],
if ij < ij+1, then let αj = ℓj ; otherwise ij > ij+1, let αj = t − ℓj . As

α1, α2, α3, α4 ∈ {1, t−1},
4∑

j=1

αj ∈ {4, t+2, 2t, 3t−2, 4t−4}. If
4∑

j=1

αj ̸= 2t,

then, as t is odd, the subgraph C is a cycle of length 4t. Otherwise
4∑

j=1

αj =

2t, then, C is tC4.

Examples: First we take G = K6 with V (K6) = {x1, x2, x3, x4, x5, x6}. Set
D0 = {x2(1)x6(1)x4(1)x5(t−1)x2, x3(1)x6(1)x5(1)x1(t−1)x3, x4(1)x6(1)x1

(1)x2(1)x4, x3(1)x5(t− 1)x2(1)x4(1)x3, x1(t− 1)x3(t− 1)x5(1)x2(t− 1)x1,
x2(t− 1)x3(1)x4(t− 1)x6(1)x2, x4(1)x5(1)x1(1)x6(t− 1)x4, x5(t− 1)x1

(t− 1)x2(t− 1)x6(1)x5, x3(t− 1)x2(t− 1)x6(t− 1)x5(t− 1)x3, x4(t− 1)x3

(1)x6(t− 1)x1(t− 1)x4, x1(1)x4(t− 1)x5(1)x3(1)x1, x2(1)x3(1)x1(1)x4

(t−1)x2, x4(t−1)x2(1)x5(t−1)x1(t−1)x4, x5(t−1)x6(t−1)x3(t−1)x4(t−1)
x5, x1(t−1)x6(t−1)x3(1)x2(1)x1}. Then, D0 is a 4-cycle decomposition of

K6(4) = H1(2)⊕Ht−1(2) with the condition that
4∑

j=1

αj ∈ {t+ 2, 3t− 2}.

Hence, by the above construction, C4t|(K6 × Ct)(2).

Next we take G = K7 with V (K7) = {x1, x2, x3, x4, x5, x6, x7}. Set D0 =
{x2(1)x6(1)x3(1)x7(t− 1)x2, x3(t− 1)x7(1)x4(1)x1(t− 1)x3, x4(1)x2(1)
x5(t− 1)x1(1)x4, x5(1)x2(1)x6(1)x3(t− 1)x5, x6(t− 1)x4(1)x7(t− 1)x3
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(t− 1)x6, x7(t− 1)x4(t− 1)x1(t− 1)x5(1)x7, x1(t− 1)x6(t− 1)x2(t− 1)
x5(1)x1, x7(1)x6(t− 1)x5(1)x4(t− 1)x7, x1(1)x5(1)x6(t− 1)x7(t− 1)x1,
x4(t− 1)x3(t− 1)x2(t− 1)x1(t− 1)x4, x5(t− 1)x2(1)x3(t− 1)x4(1)x5, x5(1)
x7(t−1)x2(1)x4(t−1)x5, x6(t−1)x1(t−1)x3(t−1)x5(t−1)x6, x7(1)x6(t−1)
x4(t− 1)x2(1)x7, x1(t− 1)x7(t− 1)x5(1)x3(1)x1, x2(t− 1)x4(1)x6(1)x1

(t− 1)x2, x3(t− 1)x2(1)x7(t− 1)x5(1)x3, x3(t− 1)x6(1)x5(t− 1)x4(1)x3,
x6(t− 1)x7(1)x1(1)x2(t− 1)x6, x2(1)x1(1)x7(1)x3(1)x2, x4(1)x3(1)x1(1)
x6(1)x4}. Then, D0 is a 4-cycle decomposition of K7(4) = H1(2)⊕Ht−1(2)

with
4∑

j=1

αj ∈ {4, t+2, 3t−2, 4t−4}. Once again, by the above construction,

C4t|(K7 × Ct)(2).

The following theorems are used in the proof of Lemma 2.7.

Theorem 2.1. [41]. The bipartite graph Kr,s can be decomposed into cycles
of length 2k if and only if r and s are even, r ≥ k, s ≥ k, and 2k divides
rs.

Theorem 2.2. [3]. Suppose n and k are positive integers with 3 ≤ k ≤ n.
Then the complete multigraph Kn(2) has a decomposition into k-cycles if
and only if k|n(n− 1).

Theorem 2.3. [13]. The graph Cr×Cs can be decomposed into two Hamil-
ton cycles if and only if at least one of r and s is odd.

Lemma 2.6. If n ≥ 4 is an integer, then

Kn(2) =





C4 ⊕ C4 ⊕ · · · ⊕ C4, if n ≡ 0 or 1 (mod 4);

C4 ⊕ C4 ⊕ · · · ⊕ C4 ⊕K6(2), if n ≡ 2 (mod 4);

C4 ⊕ C4 ⊕ · · · ⊕ C4 ⊕K7(2), if n ≡ 3 (mod 4).

Proof. If n ≡ 0 or 1 (mod 4), then, by Theorem 2.2, C4|Kn(2).

If n ≡ 2 (mod 4), then n = 4k + 2 for some integer k ≥ 1. Therefore

Kn(2) = K4k+2(2)

= K6(2)⊕K4(2)⊕K4(2)⊕ · · · ⊕K4(2)︸ ︷︷ ︸
k−1 times

⊕K6,4(2)⊕K6,4(2)⊕ · · · ⊕K6,4(2)︸ ︷︷ ︸
k−1 times

⊕K4,4(2)⊕K4,4(2)⊕ · · · ⊕K4,4(2)︸ ︷︷ ︸
(k−1)(k−2)/2 times

.
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ByTheorem2.1,C4|K6,4 andC4|K4,4, andhenceC4|K6,4(2) andC4|K4,4(2).
Thus, Kn(2) = K6(2)⊕ C4 ⊕ C4 ⊕ · · · ⊕ C4.

If n ≡ 3 (mod 4), then n = 4k + 3 for some integer k ≥ 1. Therefore

Kn(2) = K4k+3(2)

= K7(2)⊕K4(2)⊕K4(2)⊕ · · · ⊕K4(2)︸ ︷︷ ︸
k−1 times

⊕K7,4(2)⊕K7,4(2)⊕ · · · ⊕K7,4(2)︸ ︷︷ ︸
k−1 times

⊕K4,4(2)⊕K4,4(2)⊕ · · · ⊕K4,4(2)︸ ︷︷ ︸
(k−1)(k−2)/2 times

= K7(2)⊕K4(2)⊕K4(2)⊕ · · · ⊕K4(2)︸ ︷︷ ︸
k−1 times

⊕K3,4(2)⊕K3,4(2)⊕ · · · ⊕K3,4(2)︸ ︷︷ ︸
k−1 times

⊕K4,4(2)⊕K4,4(2)⊕ · · · ⊕K4,4(2)︸ ︷︷ ︸
(k−1)+(k−1)(k−2)/2 times

.

By Theorem 2.2, C4|K4(2). By Theorem 2.1, C4|K4,4. Hence C4|K4,4(2).
Let {a1, a2, a3} and {b1, b2} be the partite sets of the bipartite graph
K3,2(2). Then the 4-cycles a1b1a2b2a1, a2b1a3b2a2 and a3b1a1b2a3 decom-
poses K3,2(2). Thus, C4|K3,2(2). Since K3,4(2) = K3,2(2)⊕K3,2(2), we have
C4|K3,4(2). Thus, Kn(2) = K7(2)⊕ C4 ⊕ C4 ⊕ · · · ⊕ C4.

Lemma 2.7. If t ≥ 3 is an odd integer and n ≥ 4, then C4t|(Ct ×Kn)(2).

Proof. We consider three cases.

Case 1. n ≡ 0 or 1 (mod 4).
Then, by Lemma 2.6, Kn(2) = C4 ⊕ C4 ⊕ · · · ⊕ C4. Now,

(Ct ×Kn)(2) = Ct ×Kn(2)

= Ct × (C4 ⊕ C4 ⊕ · · · ⊕ C4)

= (Ct × C4)⊕ (Ct × C4)⊕ · · · ⊕ (Ct × C4).

By Theorem 2.3, C4t|(Ct × C4), and hence C4t|(Ct ×Kn)(2).
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Case 2. n ≡ 2 (mod 4).
Then, by Lemma 2.6, Kn(2) = C4 ⊕ C4 ⊕ · · · ⊕ C4 ⊕K6(2). Hence,

(Ct ×Kn)(2) = Ct ×Kn(2)

= (Ct × C4)⊕ (Ct × C4)⊕ · · · ⊕ (Ct × C4)⊕ (Ct ×K6(2)).

By Theorem 2.3, C4t|(Ct×C4). By the above example, C4t|(K6×Ct)(2).
Since the tensor product is commutative, K6×Ct

∼= Ct×K6, and hence,
C4t|(Ct ×K6)(2), equivalently, C4t|(Ct ×K6(2)).

Hence, C4t|(Ct ×Kn)(2).

Case 3. n ≡ 3 (mod 4).
Then, by Lemma 2.6, Kn(2) = C4 ⊕ C4 ⊕ · · · ⊕ C4 ⊕K7(2). Hence,

(Ct ×Kn)(2) = Ct ×Kn(2)

= (Ct × C4)⊕ (Ct × C4)⊕ · · · ⊕ (Ct × C4)⊕ (Ct ×K7(2)).

By Theorem 2.3, C4t|(Ct×C4). By the above example, C4t|(K7×Ct)(2).
Since the tensor product is commutative, K7×Ct

∼= Ct×K7, and hence,
C4t|(Ct ×K7)(2), equivalently, C4t|(Ct ×K7(2)).

Hence, C4t|(Ct ×Kn)(2).

2.7 (K2 × Kn)(2)

Lemma 2.8. If n ≥ 4 and t ≥ 2 are integers, and n ≡ 0 (mod 2t), then
C4t|(K2 ×Kn)(2).

Proof. Then, n = 2tk, where k ≥ 1 is an integer. We consider two cases:

Case 1. k = 1.
First, write (K2 ×K2t)(2) as (K2 ×K2t) ⊕ (K2 ×K2t). Next, write the
first K2 × K2t as (F1(V1, V2) ∪ F2(V1, V2)) ⊕ (F3(V1, V2) ∪ F4(V1, V2))
⊕ . . . ⊕ (F2t−3(V1, V2) ∪ F2t−2(V1, V2)) ⊕ F2t−1(V1, V2) and the next
K2 × K2t as (F2(V1, V2) ∪ F3(V1, V2)) ⊕ (F4(V1, V2) ∪ F5(V1, V2)) ⊕ . . .
⊕ (F2t−2(V1, V2) ∪ F2t−1(V1, V2))⊕F1(V1, V2). For i ∈ {1, 2, 3, . . . , t−1},
both F2i−1(V1, V2)∪F2i(V1, V2) and F2i(V1, V2)∪F2i+1(V1, V2) are isomor-
phic to C4t. Also, F2t−1(V1, V2)∪ F1(V1, V2) is isomorphic to C4t. Hence,
we have C4t|(K2 ×K2t)(2).
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Case 2. k ≥ 2.
Clearly, K2 ×K2kt can be decomposed into k copies each isomorphic to
K2 ×K2t and k(k − 1) copies each isomorphic to K2t,2t. Hence,

K2 ×K2kt = ((K2 ×K2t)⊕ · · · ⊕ (K2 ×K2t)) ⊕ (K2t,2t ⊕ · · · ⊕K2t,2t),

and therefore,

(K2 ×K2kt)(2) = ((K2 ×K2t)(2)⊕ · · · ⊕ (K2 ×K2t)(2))⊕
(K2t,2t)(2)⊕ · · · ⊕ (K2t,2t)(2)).

By Case 1, C4t|(K2 × K2t)(2). By Theorem 2.1, C4t|K2t,2t, and so
C4t|(K2t,2t)(2). Hence, C4t|(K2 ×K2kt)(2).

Lemma 2.9. C8|(K2 ×K5)(2) and C12|(K2 ×K7)(2).

Proof. Let V (K2) = {x1, x2}, V (K5) = {y1, y2, . . . , y5} and V (K7) =
{y1, y2, . . . , y7}.

In (K2 × K5)(2), C
′ = v11v

3
2v

5
1v

4
2v

3
1v

1
2v

4
1v

5
2v

1
1 is a cycle of length 8 and it

contains: for each ℓ ∈ [1, 4], two edges of length ℓ from V1 to V2. Hence,
{C ′, σ(C ′), σ2(C ′), σ3(C ′), σ4(C ′)} is a decomposition of (K2 ×K5)(2).

In (K2 ×K7)(2), C
′′ = v11v

4
2v

2
1v

3
2v

4
1v

2
2v

5
1v

6
2v

3
1v

1
2v

6
1v

5
2v

1
1 is a cycle of length 12

and it contains: for each ℓ ∈ [1, 6], two edges of length ℓ from V1 to V2.
Hence, {C ′′, σ(C ′′), σ2(C ′′), σ3(C ′′), σ4(C ′′), σ5(C ′′), σ6(C ′′)} is a decompo-
sition of (K2 ×K7)(2).

2.8 Km ◦ Kn

The following theorems are used in the proof of Lemma 2.10.

Theorem 2.4. (see [25]). Let m ≥ 3 be an odd integer.
(1) If m ≡ 1or 3 (mod 6), then C3|Km.
(2) If m ≡ 5 (mod 6), then Km can be decomposed into (m(m− 1)− 20)/6
3-cycles and a K5.

Theorem 2.5 is proven in [1] when m is an odd prime, but one can easily
see that the same proof works for any odd integer m.

Theorem 2.5. [1]. If m and k are at least 3, both of them are odd and
3 ≤ k ≤ m, then Ck ◦Km admits a Cm-factorization.
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Theorem 2.6. [23]. If m and n are at least 3, then C3|(Km ◦Kn) if and
only if (1) (m− 1)n is even and (2) 3|m(m− 1)n2.

Lemma 2.10. If m ≥ 3 and n ≥ 3 are odd integers, then Cn|(Km ◦Kn).

Proof. By Theorem 2.4, Km = K3 ⊕K3 ⊕ · · · ⊕K3, if m ≡ 1or 3 (mod 6)
and Km = K3 ⊕K3 ⊕ · · · ⊕K3 ⊕K5, if m ≡ 5 (mod 6). Hence, Km ◦Kn =
(K3◦Kn)⊕(K3◦Kn)⊕· · ·⊕(K3◦Kn), ifm ≡ 1or 3 (mod 6) andKm◦Kn =
(K3 ◦Kn)⊕ (K3 ◦Kn)⊕· · ·⊕ (K3 ◦Kn)⊕ (K5 ◦Kn), if m ≡ 5 (mod 6). To
prove the lemma, it is enough to prove that Cn|(K3◦Kn) and Cn|(K5◦Kn).
By Theorem 2.5, Cn|(K3 ◦Kn). By Theorem 2.6, C3|(K5 ◦K3). Hence, it
is enough to prove that Cn|(K5 ◦ Kn), for n ≥ 5. As C5|K5, we have
K5 ◦ Kn = (C5 ◦ Kn) ⊕ (C5 ◦ Kn). By Theorem 2.5, Cn|(C5 ◦ Kn). This
completes the proof.

3 Proof of Theorem 1.1

We need following theorems and a lemma for the proof of Theorem 1.1.

Theorem 3.1. [2, 36]. Suppose n ≥ 3 and k ≥ 3 are positive integers.
Then the complete graph Kn admits a decomposition into k-cycles if and
only if n ≥ k, n is odd and k|

(
n
2

)
.

Theorem 3.2. [42]. Let λ, k and n be positive integers. There exists a
Pk+1-decomposition of Kn(λ) if and only if n ≥ k + 1 and λn(n − 1) ≡
0 (mod 2k).

Lemma 3.1. [32]. If s ≥ 3 is an odd integer, r ≥ 3 and Cr|G, then
Crs|(G×Ks+1).

Proof of Theorem 1.1.
By hypothesis, m ≡ 0 (mod t), m ≡ 1 (mod t), n ≡ 0 (mod t) or n ≡
1 (mod t). Since the tensor product is commutative, we assume that m ≡ 0
or 1 (mod t). As t ≥ 3 and mn ≥ 4t, we have (m,n) ̸= (3, 3). We consider
four cases.

Case 1. m ≥ 5 is odd and n ≥ 4.
As m ≡ 0 or 1 (mod t), we have, by Theorem 3.1, Ct|Km. Thus, Km =
Ct⊕Ct⊕· · ·⊕Ct. Hence, (Km×Kn)(2) = ((Ct⊕Ct⊕· · ·⊕Ct)×Kn)(2)
= (Ct × Kn)(2) ⊕ (Ct × Kn)(2) ⊕ · · · ⊕ (Ct × Kn)(2). By Lemma 2.7,
C4t|(Ct ×Kn)(2). Thus, we have C4t|(Km ×Kn)(2).
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Case 2. m ≥ 4 is even and n ≥ 4.
We consider two subcases.

Subcase 2.1. m ≡ 0 (mod t).
As t is odd and m is even, we have m ≡ 0 (mod 2t). Then, m = 2tk for
some integer k ≥ 1.

If k = 1, then Km = K2t. Also, Kn = K2 ⊕ K2 ⊕ · · · ⊕ K2. Hence,
(Km ×Kn)(2) = (K2t ×K2)(2)⊕ (K2t ×K2)(2)⊕ · · · ⊕ (K2t ×K2)(2).
By Lemma 2.8, C4t|(K2 × K2t)(2), equivalently, C4t|(K2t × K2)(2).
Hence, C4t|(Km ×Kn)(2).

So, assume that k ≥ 2. Then, Km = K2tk = kK2t ⊕ (Kk ◦K2t). Hence,
(Km ×Kn)(2) = k(K2t ×Kn)(2)⊕ ((Kk ◦K2t)×Kn)(2). By the above
particular value for k, i.e., k = 1, we have C4t|(K2t ×Kn)(2). To show
that C4t|(Km ×Kn)(2), it is enough if we show that C4t|((Kk ◦K2t)×
Kn)(2). First, write Kk ◦ K2t as an edge-disjoint union of k(k − 1)/2
copies of K2t,2t. By Theorem 2.1, C4t|K2t,2t. Now, write each copy of
K2t,2t as an edge-disjoint union of t copies of C4t. Finally, write Kn as
the edge-disjoint union of n(n− 1)/2 copies of K2. Hence, it is enough
if we show that C4t|(C4t ×K2)(2). Since C4t ×K2 is the disjoint union
of two copies of C4t, C4t|(C4t ×K2), and hence C4t|(C4t ×K2)(2).

Subcase 2.2. m ≡ 1 (mod t).
Then, m = tk + 1 for some integer k ≥ 1. As t is odd and m is even,
we have k is odd.

If k = 1, then (Kt+1 ×Kn)(2) = Kt+1 ×Kn(2). By Lemma 2.6,

Kn(2) =





C4 ⊕ C4 ⊕ · · · ⊕ C4, if n ≡ 0 or 1 (mod 4);

C4 ⊕ C4 ⊕ · · · ⊕ C4 ⊕K6(2), if n ≡ 2 (mod 4);

C4 ⊕ C4 ⊕ · · · ⊕ C4 ⊕K7(2), if n ≡ 3 (mod 4);

To show that C4t|(Kt+1 × Kn)(2), it is enough if we show that
C4t|(Kt+1×C4), C4t|(Kt+1×K6(2)) and C4t|(Kt+1×K7(2)). As C4|C4

and t ≥ 3 is odd, we have, by Lemma 3.1, C4t|(C4 × Kt+1). As C4 ×
Kt+1

∼= Kt+1 × C4, C4t|(Kt+1 × C4).

By Lemmas 2.3 and 2.5, we have, respectively, C4t|(Kt+1 ×K6)(2) and
C4t|(Kt+1×K7)(2). Hence, C4t|(Kt+1×K6(2)) and C4t|(Kt+1×K7(2)).
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So, assume that k ≥ 3. We can write Km = Ktk+1 as

Kt+1 ⊕Kt+1 ⊕ · · · ⊕Kt+1︸ ︷︷ ︸
k times

⊕(Kk ◦Kt),

and hence,

(Km ×Kn)(2) =

(Kt+1 ×Kn)(2)⊕ (Kt+1 ×Kn)(2)⊕ · · · ⊕ (Kt+1 ×Kn)(2)︸ ︷︷ ︸
k times

⊕ ((Kk ◦Kt)×Kn)(2).

By the above particular value for k, i.e., k = 1, we have C4t|(Kt+1 ×
Kn)(2). To show that C4t|(Km ×Kn)(2), it is enough if we show that
C4t|((Kk ◦ Kt) × Kn)(2). By Lemma 2.10, Ct|(Kk ◦ Kt). Hence, it is
enough if we show that C4t|(Ct×Kn)(2). This follows from Lemma 2.7.

Case 3. m = 3 and n ≥ 4.
As 3 = m ≡ 0 or 1 (mod t) and t ≥ 3, we have t = 3. Hence, we need to
show C12|(K3×Kn)(2). Equivalently, we have to show C12|(K3×Kn(2)).
Now, by Lemma 2.6,

Kn(2) =





C4 ⊕ C4 ⊕ · · · ⊕ C4, if n ≡ 0 or 1 (mod 4);

C4 ⊕ C4 ⊕ · · · ⊕ C4 ⊕K6(2), if n ≡ 2 (mod 4);

C4 ⊕ C4 ⊕ · · · ⊕ C4 ⊕K7(2), if n ≡ 3 (mod 4).

To show that C12|(K3 × Kn(2)), we have to show that C12|(K3 × C4),
C12|(K3 ×K6(2)) and C12|(K3 ×K7(2)).

By Theorem 2.3, C12|(C3 × C4), i.e., C12|(K3 × C4).

Since K3 = K2 ⊕K2 ⊕K2, to show that C12|(K3 ×K6(2)) (respectively,
C12|(K3×K7(2))), it is enough if we show that C12|(K2×K6(2)) (respec-
tively, C12|(K2 ×K7(2))). By Lemma 2.8 (respectively, 2.9), C12|(K2 ×
K6)(2) (respectively, C12|(K2 ×K7)(2)), equivalently, C12|(K2 ×K6(2))
(respectively, C12|(K2 ×K7(2))).

Case 4. m ≥ 4 and n = 3.
We have to show that C4t|(Km ×K3)(2); equivalently, we have to show
that C4t|(Km ×K3(2)).

If m ≥ 2t+1 and 4t|2m(m− 1), then, by Theorem 3.2, P2t+1|Km(2). So,
Km(2) = P2t+1 ⊕ P2t+1 ⊕ · · · ⊕ P2t+1. Hence, (Km ×K3)(2) = (Km(2)×
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K3) = (P2t+1 ×K3)⊕ (P2t+1 ×K3)⊕ · · · ⊕ (P2t+1 ×K3). By Lemma 2.1,
C4t|(P2t+1×K3), and hence, C4t|(Km×K3)(2).Observe that 4t|2m(m−1)
is same as 2t|m(m − 1); since m ≡ 0 or 1 (mod t) and t is odd, this
divisibility is again same as 2|m(m− 1), which is clearly true. As m ≡ 0
or 1 (mod t), m equals kt or kt+1 for some integer k ≥ 1. The inequality
m ≥ 2t+1 fails only form ∈ {t, t+1, 2t}. So, assume thatm ∈ {t, t+1, 2t}.

If m = 2t, then (Km × K3)(2) = (K2t × K3)(2) = (K2t × K2)(2) ×
(K2t ×K2)(2) × (K2t ×K2)(2). By Lemma 2.8, C4t|(K2 ×K2t)(2), and
hence C4t|(K2t × K2)(2). Thus, C4t|(Km × K3)(2). Hence, assume that
m ∈ {t, t + 1}. As mn ≥ 4t, we have 3m ≥ 4t, and hence m ̸= t; also
m = t+ 1 only when m = 4 and t = 3.

For m = 4 and t = 3, (K4 ×K3)(2) = K4(2)×K3 = (C4 ×K3)× (C4 ×
K3) × (C4 × K3); since C4|K4(2), by Theorem 2.2. By Theorem 2.3,
C12|(C4 × C3). Hence, C12|(K4 ×K3)(2).

This completes the proof.

4 Proof of Theorem 1.2

The proof of the necessity of Theorem 1.2 is obvious, and we prove the
sufficiency. We consider two cases.

Case 1. p ≥ 3.
As p is an odd prime, the hypothesis, 4p|m(m− 1)n(n− 1), implies that
m ≡ 0 (mod p), m ≡ 1 (mod p), n ≡ 0 (mod p) or n ≡ 1 (mod p). Hence,
by Theorem 1.1, C4p|(Km ×Kn)(2).

Case 2. p = 2.
We have to show that C8|(Km × Kn)(2). As 8|m(m − 1)n(n − 1), we
have, 4|m(m−1) or 4|n(n−1). Since the tensor product is commutative,
we assume that 4|m(m − 1). Hence, 4|m or 4|(m − 1). We consider two
subcases. First, we claim the following.

Claim 1. For k ≥ 2, C8|((Kk ◦K4)×Kn).

First, write Kk ◦K4 as an edge-disjoint union of k(k − 1)/2 copies of
K4,4. By Theorem 2.1, C8|K4,4. Now, write each copy of K4,4 as an
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edge-disjoint union of 2 copies of C8. Finally, write Kn as the edge-
disjoint union of n(n − 1)/2 copies of K2. Hence, to prove the claim,
it is enough if we show that C8|(C8 × K2). Since C8 × K2 = 2C8,
C8|(C8 ×K2).

It follows from Claim 1 that

Claim 2. For k ≥ 2, C8|((Kk ◦K4)×Kn)(2).

Subcase 2.1. 4|m.
Then, m = 4k for some integer k ≥ 1.

If k = 1, then

(Km ×Kn)(2) = (K4 ×Kn)(2) = (K4 × (K2 ⊕K2 ⊕ · · · ⊕K2))(2)

= (K4 ×K2)(2)⊕ (K4 ×K2)(2)⊕ · · · ⊕ (K4 ×K2)(2).

By Lemma 2.8, C8|(K2 × K4)(2), and hence C8|(K4 × K2)(2). Thus,
C8|(K4 ×Kn)(2). So, assume that k ≥ 2. Then

Km = K4k = kK4 ⊕ (Kk ◦K4),

and hence,

(Km ×Kn)(2) = k(K4 ×Kn)(2)⊕ ((Kk ◦K4)×Kn)(2).

By the above particular value for k, i.e., k = 1, we have C8|(K4×Kn)(2).
Also, by Claim 2, C8|((Kk ◦K4)×Kn)(2).

Subcase 2.2. 4|(m− 1).
Then m = 4k + 1 for some integer k ≥ 1. If k = 1, then

(Km ×Kn)(2) = (K5 ×Kn)(2) = (K5 × (K2 ⊕K2 ⊕ · · · ⊕K2))(2)

= (K5 ×K2)(2)⊕ (K5 ×K2)(2)⊕ · · · ⊕ (K5 ×K2)(2).

By Lemma 2.9, C8|(K2 × K5)(2), and hence, C8|(K5 × K2)(2). Thus,
C8|(K5 × Kn)(2). So, assume that k ≥ 2. We can write Km = K4k+1

as
K5 ⊕K5 ⊕ · · · ⊕K5︸ ︷︷ ︸

k times

⊕(Kk ◦K4),
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and hence,

(Km ×Kn)(2) =

(K5 ×Kn)(2)⊕ (K5 ×Kn)(2)⊕ · · · ⊕ (K5 ×Kn)(2)︸ ︷︷ ︸
k times

⊕ ((Kk ◦K4)×Kn)(2).

By the above particular value for k, i.e., k = 1, we have C8|(K5×Kn)(2).
Again, by Claim 2, C8|((Kk ◦K4)×Kn)(2).

This completes the proof.

5 Conclusion

The following theorems are used in the proof of Corollary 5.1.

Theorem 5.1. [34]. If p ≥ 3 is a prime, m,n ≥ 3 and k ∈ {p, 2p, 3p, p2},
then Ck|(Km ×Kn)(2) if and only if k|m(m− 1)n(n− 1) and k ≤ mn.

Theorem 5.2. [33]. If m,n ≥ 3, then C4|(Km × Kn)(λ) if and only if
4|λ

(
m
2

)
n(n− 1) and (Km ×Kn)(λ) is an even regular graph.

By Theorems 5.1, 5.2 and 1.2, we have:

Corollary 5.1. If m,n ≥ 3 and 3 ≤ k ≤ 15, then Ck|(Km ×Kn)(2) if and
only if k|m(m− 1)n(n− 1) and k ≤ mn.
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